File size: 2,332 Bytes
914642d
 
e2e1cb9
 
 
 
 
 
 
914642d
e2e1cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---

license: apache-2.0
language:
- en
library_name: transformers
pipeline_tag: image-text-to-text
tags:
- multimodal
- aria
---

<!-- <p align="center">
  <br>Aria</br>
</p>  -->

This is a fork of the [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) model. The primary modification is the replacement of [grouped GEMM](https://github.com/tgale96/grouped_gemm) with a sequential MLP. In this setup, each expert is a `torch.nn.Linear` layer executed sequentially. This change facilitates easier quantization using current open-source libraries, which are optimized to quantize `nn.Linear` layers.


## Quick Start
### Installation
```

pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow

pip install flash-attn --no-build-isolation

```

### Inference

```python

import requests

import torch

from PIL import Image

from transformers import AutoModelForCausalLM, AutoProcessor



model_id_or_path = "rhymes-ai/Aria-sequential_mlp"



model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)



processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)



image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"



image = Image.open(requests.get(image_path, stream=True).raw)



messages = [

    {

        "role": "user",

        "content": [

            {"text": None, "type": "image"},

            {"text": "what is the image?", "type": "text"},

        ],

    }

]



text = processor.apply_chat_template(messages, add_generation_prompt=True)

inputs = processor(text=text, images=image, return_tensors="pt")

inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)

inputs = {k: v.to(model.device) for k, v in inputs.items()}



with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):

    output = model.generate(

        **inputs,

        max_new_tokens=500,

        stop_strings=["<|im_end|>"],

        tokenizer=processor.tokenizer,

        do_sample=True,

        temperature=0.9,

    )

    output_ids = output[0][inputs["input_ids"].shape[1]:]

    result = processor.decode(output_ids, skip_special_tokens=True)



print(result)

```