update readme
Browse files- README.md +64 -0
- inference.py +0 -43
README.md
CHANGED
@@ -1,3 +1,67 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
This repository offers int8 quantized weights of the [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) model utilizing the [TorchAO](https://github.com/pytorch/ao) quantization framework. It now supports inference within 30GB of GPU memory.
|
6 |
+
|
7 |
+
|
8 |
+
## Quick Start
|
9 |
+
### Installation
|
10 |
+
```
|
11 |
+
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torch==2.5.0 torchao==0.6.1 torchvision requests Pillow
|
12 |
+
pip install flash-attn --no-build-isolation
|
13 |
+
```
|
14 |
+
|
15 |
+
### Inference
|
16 |
+
|
17 |
+
```python
|
18 |
+
import requests
|
19 |
+
import torch
|
20 |
+
from PIL import Image
|
21 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
22 |
+
|
23 |
+
model_id_or_path = "rhymes-ai/Aria-torchao-int8wo"
|
24 |
+
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_id_or_path,
|
27 |
+
device_map="auto",
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
trust_remote_code=True,
|
30 |
+
attn_implementation="flash_attention_2",
|
31 |
+
)
|
32 |
+
|
33 |
+
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
|
34 |
+
|
35 |
+
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
36 |
+
|
37 |
+
image = Image.open(requests.get(image_path, stream=True).raw)
|
38 |
+
|
39 |
+
messages = [
|
40 |
+
{
|
41 |
+
"role": "user",
|
42 |
+
"content": [
|
43 |
+
{"text": None, "type": "image"},
|
44 |
+
{"text": "what is the image?", "type": "text"},
|
45 |
+
],
|
46 |
+
}
|
47 |
+
]
|
48 |
+
|
49 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
50 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
51 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
|
52 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
53 |
+
|
54 |
+
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
55 |
+
output = model.generate(
|
56 |
+
**inputs,
|
57 |
+
max_new_tokens=500,
|
58 |
+
stop_strings=["<|im_end|>"],
|
59 |
+
tokenizer=processor.tokenizer,
|
60 |
+
do_sample=True,
|
61 |
+
temperature=0.9,
|
62 |
+
)
|
63 |
+
output_ids = output[0][inputs["input_ids"].shape[1] :]
|
64 |
+
result = processor.decode(output_ids, skip_special_tokens=True)
|
65 |
+
|
66 |
+
print(result)
|
67 |
+
```
|
inference.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from PIL import Image
|
3 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
4 |
-
import requests
|
5 |
-
|
6 |
-
model_id_or_path = "./"
|
7 |
-
tokenizer_id_or_path = "./"
|
8 |
-
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
10 |
-
model_id_or_path,
|
11 |
-
device_map="cuda",
|
12 |
-
torch_dtype=torch.bfloat16,
|
13 |
-
trust_remote_code=True,
|
14 |
-
attn_implementation="flash_attention_2",
|
15 |
-
)
|
16 |
-
|
17 |
-
model = torch.compile(model, mode="max-autotune", fullgraph=True)
|
18 |
-
|
19 |
-
messages = [
|
20 |
-
{
|
21 |
-
"role": "user",
|
22 |
-
"content": [
|
23 |
-
{"text": None, "type": "image"},
|
24 |
-
{"text": "what's in the image?", "type": "text"},
|
25 |
-
],
|
26 |
-
}
|
27 |
-
]
|
28 |
-
|
29 |
-
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
30 |
-
|
31 |
-
image = Image.open(requests.get(image_path, stream=True).raw)
|
32 |
-
|
33 |
-
processor = AutoProcessor.from_pretrained(tokenizer_id_or_path, trust_remote_code=True)
|
34 |
-
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
35 |
-
inputs = processor(text=text, images=image, return_tensors="pt")
|
36 |
-
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
|
37 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
38 |
-
|
39 |
-
out = model.generate(**inputs, max_new_tokens=100, tokenizer=processor.tokenizer, stop_strings=["<|im_end|>"])
|
40 |
-
|
41 |
-
output_ids = out[0][inputs["input_ids"].shape[1] :]
|
42 |
-
result = processor.decode(output_ids, skip_special_tokens=True)
|
43 |
-
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|