|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import nn |
|
from transformers import GenerationMixin, PreTrainedModel |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.utils import logging |
|
|
|
from .configuration_aria import AriaConfig |
|
from .moe_lm import AriaMoELMForCausalLM |
|
from .projector import AriaProjector |
|
from .vision_encoder import AriaVisionModel |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class AriaPretrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. |
|
""" |
|
|
|
config_class = AriaConfig |
|
base_model_prefix = "model" |
|
_no_split_modules = [] |
|
supports_gradient_checkpointing = True |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
""" |
|
Retrieve language_model's attribute to check whether the model supports |
|
SDPA (Scaled Dot Product Attention) or not. |
|
""" |
|
return self.language_model._supports_sdpa |
|
|
|
|
|
@dataclass |
|
|
|
class AriaCausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for Aria causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, |
|
sequence_length, hidden_size)`. |
|
|
|
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
def build_mm_projector(config: AriaConfig): |
|
""" |
|
Builds and returns an AriaProjector instance based on the provided configuration. |
|
|
|
Args: |
|
config (AriaConfig): The configuration object containing necessary parameters. |
|
|
|
Returns: |
|
AriaProjector: An instance of the AriaProjector class. |
|
""" |
|
return AriaProjector( |
|
patch_to_query_dict=config.projector_patch_to_query_dict, |
|
embed_dim=config.vision_config.hidden_size, |
|
num_heads=config.vision_config.num_attention_heads, |
|
kv_dim=config.vision_config.hidden_size, |
|
ff_dim=config.text_config.hidden_size, |
|
output_dim=config.text_config.hidden_size, |
|
) |
|
|
|
|
|
|
|
class AriaForConditionalGeneration(AriaPretrainedModel, GenerationMixin): |
|
""" |
|
Aria model for conditional generation tasks. |
|
|
|
This model combines a vision tower, a multi-modal projector, and a language model |
|
to perform tasks that involve both image and text inputs. |
|
""" |
|
|
|
def __init__(self, config: AriaConfig): |
|
super().__init__(config) |
|
|
|
self.vision_tower = AriaVisionModel(config.vision_config) |
|
self.multi_modal_projector = build_mm_projector(config) |
|
self.vocab_size = config.text_config.vocab_size |
|
self.language_model = AriaMoELMForCausalLM(config.text_config) |
|
self.pad_token_id = ( |
|
self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
) |
|
self.post_init() |
|
|
|
def freeze_vit(self): |
|
"""Freeze the parameters of the vision tower.""" |
|
for param in self.vision_tower.parameters(): |
|
param.requires_grad = False |
|
|
|
def freeze_projector(self): |
|
"""Freeze the parameters of the multi-modal projector.""" |
|
for param in self.multi_modal_projector.parameters(): |
|
param.requires_grad = False |
|
|
|
def freeze_llm(self): |
|
"""Freeze the parameters of the language model.""" |
|
for param in self.language_model.parameters(): |
|
param.requires_grad = False |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
"""Retrieve the input embeddings from the language model.""" |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
"""Set the input embeddings for the language model.""" |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def set_moe_z_loss_coeff(self, value): |
|
""" |
|
Set the z-loss coefficient for Mixture of Experts (MoE) models. |
|
|
|
Args: |
|
value: The z-loss coefficient value to set. |
|
""" |
|
self.language_model.set_z_loss_coeff(value) |
|
|
|
def set_moe_aux_loss_coeff(self, value): |
|
""" |
|
Set the auxiliary loss coefficient for Mixture of Experts (MoE) models. |
|
|
|
Args: |
|
value: The auxiliary loss coefficient value to set. |
|
""" |
|
self.language_model.set_aux_loss_coeff(value) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
pixel_mask: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
num_logits_to_keep: int = 0, |
|
) -> Union[Tuple, AriaCausalLMOutputWithPast]: |
|
""" |
|
Forward pass of the AriaForConditionalGeneration model. |
|
|
|
This method processes both text and image inputs, merges them if necessary, |
|
and generates output using the language model. |
|
|
|
Args: |
|
input_ids (torch.LongTensor, optional): Input token ids. |
|
pixel_values (torch.FloatTensor, optional): Pixel values of the images. |
|
pixel_mask (torch.LongTensor, optional): Mask for the pixel values. |
|
attention_mask (torch.Tensor, optional): Attention mask. |
|
position_ids (torch.LongTensor, optional): Position ids. |
|
past_key_values (List[torch.FloatTensor], optional): Past key values for efficient processing. |
|
inputs_embeds (torch.FloatTensor, optional): Input embeddings. |
|
labels (torch.LongTensor, optional): Labels for computing the language modeling loss. |
|
use_cache (bool, optional): Whether to use the model's cache mechanism. |
|
output_attentions (bool, optional): Whether to output attention weights. |
|
output_hidden_states (bool, optional): Whether to output hidden states. |
|
return_dict (bool, optional): Whether to return a ModelOutput object. |
|
|
|
Returns: |
|
Union[Tuple, AriaCausalLMOutputWithPast]: Model outputs. |
|
""" |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if inputs_embeds is None: |
|
|
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
image_features = None |
|
if pixel_values is not None: |
|
image_outputs, image_attn_mask = self.vision_tower( |
|
pixel_values, |
|
pixel_mask=pixel_mask, |
|
) |
|
|
|
selected_image_feature = image_outputs.last_hidden_state |
|
image_features = self.multi_modal_projector( |
|
selected_image_feature, attn_mask=image_attn_mask |
|
) |
|
|
|
if image_features is not None: |
|
n_image_tokens = (input_ids == self.config.image_token_index).sum().item() |
|
n_image_features = image_features.shape[0] * image_features.shape[1] |
|
|
|
if n_image_tokens != n_image_features: |
|
raise ValueError( |
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" |
|
) |
|
special_image_mask = ( |
|
(input_ids == self.config.image_token_index) |
|
.unsqueeze(-1) |
|
.expand_as(inputs_embeds) |
|
.to(inputs_embeds.device) |
|
) |
|
image_features = image_features.to( |
|
inputs_embeds.device, inputs_embeds.dtype |
|
) |
|
inputs_embeds = inputs_embeds.masked_scatter( |
|
special_image_mask, image_features |
|
) |
|
|
|
outputs = self.language_model( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
num_logits_to_keep=num_logits_to_keep, |
|
) |
|
|
|
logits = outputs[0] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
if attention_mask is not None: |
|
|
|
|
|
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to( |
|
logits.device |
|
) |
|
shift_logits = logits[..., :-1, :][ |
|
shift_attention_mask.to(logits.device) != 0 |
|
].contiguous() |
|
shift_labels = labels[..., 1:][ |
|
shift_attention_mask.to(labels.device) != 0 |
|
].contiguous() |
|
else: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), |
|
shift_labels.view(-1).to(shift_logits.device), |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return AriaCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
pixel_values=None, |
|
attention_mask=None, |
|
cache_position=None, |
|
num_logits_to_keep=None, |
|
**kwargs, |
|
): |
|
model_inputs = self.language_model.prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
num_logits_to_keep=num_logits_to_keep, |
|
**kwargs, |
|
) |
|
|
|
if cache_position[0] == 0: |
|
|
|
|
|
model_inputs["pixel_values"] = pixel_values |
|
|
|
return model_inputs |
|
|