richardsdexa commited on
Commit
f8f0ccb
1 Parent(s): 10b6cef

Training in progress, epoch 1

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1153
21
+ - Answer: {'precision': 0.3834652594547054, 'recall': 0.5389369592088998, 'f1': 0.44809866392600206, 'number': 809}
22
+ - Header: {'precision': 0.29347826086956524, 'recall': 0.226890756302521, 'f1': 0.2559241706161137, 'number': 119}
23
+ - Question: {'precision': 0.5310457516339869, 'recall': 0.6103286384976526, 'f1': 0.5679335954565312, 'number': 1065}
24
+ - Overall Precision: 0.4537
25
+ - Overall Recall: 0.5585
26
+ - Overall F1: 0.5007
27
+ - Overall Accuracy: 0.6247
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7836 | 1.0 | 10 | 1.5583 | {'precision': 0.03470919324577861, 'recall': 0.04573547589616811, 'f1': 0.039466666666666664, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1947049089906233, 'recall': 0.3314553990610329, 'f1': 0.24530924252953445, 'number': 1065} | 0.1355 | 0.1957 | 0.1601 | 0.3600 |
60
+ | 1.4728 | 2.0 | 20 | 1.3281 | {'precision': 0.1966216216216216, 'recall': 0.35970333745364647, 'f1': 0.25425950196592395, 'number': 809} | {'precision': 0.017543859649122806, 'recall': 0.008403361344537815, 'f1': 0.011363636363636362, 'number': 119} | {'precision': 0.2851758793969849, 'recall': 0.4262910798122066, 'f1': 0.34173880316146027, 'number': 1065} | 0.2384 | 0.3743 | 0.2913 | 0.4276 |
61
+ | 1.2767 | 3.0 | 30 | 1.1812 | {'precision': 0.24393624393624394, 'recall': 0.43510506798516685, 'f1': 0.3126110124333925, 'number': 809} | {'precision': 0.21052631578947367, 'recall': 0.16806722689075632, 'f1': 0.1869158878504673, 'number': 119} | {'precision': 0.36664584634603375, 'recall': 0.5511737089201878, 'f1': 0.4403600900225056, 'number': 1065} | 0.3055 | 0.4812 | 0.3737 | 0.4924 |
62
+ | 1.1394 | 4.0 | 40 | 1.1120 | {'precision': 0.28407350689127103, 'recall': 0.45859085290482077, 'f1': 0.35082742316784865, 'number': 809} | {'precision': 0.24691358024691357, 'recall': 0.16806722689075632, 'f1': 0.2, 'number': 119} | {'precision': 0.47240802675585286, 'recall': 0.5305164319248826, 'f1': 0.4997788589119858, 'number': 1065} | 0.3701 | 0.4797 | 0.4178 | 0.5608 |
63
+ | 1.0619 | 5.0 | 50 | 1.1166 | {'precision': 0.29784454604833444, 'recall': 0.5636588380716935, 'f1': 0.38974358974358975, 'number': 809} | {'precision': 0.30303030303030304, 'recall': 0.16806722689075632, 'f1': 0.21621621621621626, 'number': 119} | {'precision': 0.4780621572212066, 'recall': 0.49107981220657276, 'f1': 0.4844835572024085, 'number': 1065} | 0.3712 | 0.5013 | 0.4266 | 0.5636 |
64
+ | 0.9741 | 6.0 | 60 | 1.0751 | {'precision': 0.33383010432190763, 'recall': 0.553770086526576, 'f1': 0.4165504416550442, 'number': 809} | {'precision': 0.2676056338028169, 'recall': 0.15966386554621848, 'f1': 0.19999999999999998, 'number': 119} | {'precision': 0.5021570319240725, 'recall': 0.5464788732394367, 'f1': 0.5233812949640289, 'number': 1065} | 0.4079 | 0.5263 | 0.4596 | 0.5844 |
65
+ | 0.907 | 7.0 | 70 | 1.0587 | {'precision': 0.3643835616438356, 'recall': 0.4932014833127318, 'f1': 0.41911764705882354, 'number': 809} | {'precision': 0.2125, 'recall': 0.14285714285714285, 'f1': 0.1708542713567839, 'number': 119} | {'precision': 0.5027624309392266, 'recall': 0.5981220657276995, 'f1': 0.5463121783876502, 'number': 1065} | 0.4312 | 0.5283 | 0.4749 | 0.6038 |
66
+ | 0.8469 | 8.0 | 80 | 1.1514 | {'precision': 0.365814696485623, 'recall': 0.5661310259579728, 'f1': 0.4444444444444444, 'number': 809} | {'precision': 0.25, 'recall': 0.16806722689075632, 'f1': 0.20100502512562815, 'number': 119} | {'precision': 0.5555555555555556, 'recall': 0.4788732394366197, 'f1': 0.5143721633888049, 'number': 1065} | 0.4391 | 0.4957 | 0.4657 | 0.5893 |
67
+ | 0.7877 | 9.0 | 90 | 1.0944 | {'precision': 0.37608318890814557, 'recall': 0.5364647713226205, 'f1': 0.44218033622007136, 'number': 809} | {'precision': 0.2558139534883721, 'recall': 0.18487394957983194, 'f1': 0.21463414634146344, 'number': 119} | {'precision': 0.531934306569343, 'recall': 0.5474178403755868, 'f1': 0.5395650161962054, 'number': 1065} | 0.4448 | 0.5213 | 0.4800 | 0.6101 |
68
+ | 0.7464 | 10.0 | 100 | 1.0861 | {'precision': 0.3794642857142857, 'recall': 0.5253399258343634, 'f1': 0.4406428201140487, 'number': 809} | {'precision': 0.24444444444444444, 'recall': 0.18487394957983194, 'f1': 0.21052631578947367, 'number': 119} | {'precision': 0.5038699690402477, 'recall': 0.6112676056338028, 'f1': 0.5523971149766653, 'number': 1065} | 0.4388 | 0.5509 | 0.4885 | 0.6188 |
69
+ | 0.7109 | 11.0 | 110 | 1.0985 | {'precision': 0.3770491803278688, 'recall': 0.5401730531520396, 'f1': 0.44410569105691056, 'number': 809} | {'precision': 0.30120481927710846, 'recall': 0.21008403361344538, 'f1': 0.24752475247524758, 'number': 119} | {'precision': 0.5317725752508361, 'recall': 0.5971830985915493, 'f1': 0.5625829279080052, 'number': 1065} | 0.4504 | 0.5509 | 0.4956 | 0.6204 |
70
+ | 0.6833 | 12.0 | 120 | 1.1252 | {'precision': 0.380327868852459, 'recall': 0.5735475896168108, 'f1': 0.45736816165598815, 'number': 809} | {'precision': 0.2967032967032967, 'recall': 0.226890756302521, 'f1': 0.2571428571428572, 'number': 119} | {'precision': 0.5510018214936248, 'recall': 0.568075117370892, 'f1': 0.559408229311142, 'number': 1065} | 0.4550 | 0.5499 | 0.4980 | 0.6213 |
71
+ | 0.6591 | 13.0 | 130 | 1.1009 | {'precision': 0.38546458141674333, 'recall': 0.5179233621755254, 'f1': 0.4419831223628692, 'number': 809} | {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} | {'precision': 0.5226400613967767, 'recall': 0.6394366197183099, 'f1': 0.575168918918919, 'number': 1065} | 0.4520 | 0.5650 | 0.5022 | 0.6212 |
72
+ | 0.639 | 14.0 | 140 | 1.1190 | {'precision': 0.3828125, 'recall': 0.484548825710754, 'f1': 0.42771412984178947, 'number': 809} | {'precision': 0.2755102040816326, 'recall': 0.226890756302521, 'f1': 0.2488479262672811, 'number': 119} | {'precision': 0.5295527156549521, 'recall': 0.6225352112676056, 'f1': 0.5722917565817868, 'number': 1065} | 0.4558 | 0.5429 | 0.4955 | 0.6197 |
73
+ | 0.6544 | 15.0 | 150 | 1.1153 | {'precision': 0.3834652594547054, 'recall': 0.5389369592088998, 'f1': 0.44809866392600206, 'number': 809} | {'precision': 0.29347826086956524, 'recall': 0.226890756302521, 'f1': 0.2559241706161137, 'number': 119} | {'precision': 0.5310457516339869, 'recall': 0.6103286384976526, 'f1': 0.5679335954565312, 'number': 1065} | 0.4537 | 0.5585 | 0.5007 | 0.6247 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.36.2
79
+ - Pytorch 2.1.2+cu118
80
+ - Datasets 2.18.0
81
+ - Tokenizers 0.15.0
logs/events.out.tfevents.1711515807.DESKTOP-3M5IIL5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccd2c6e5d51346c4931fe7ea4a74d268aeb0ea8c317b3780995cf48d56b3276a
3
- size 4757
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7303cc18bc41955c6c87eca1e49c5ec9cc79b3d9e517507d9a052ce173e21e6
3
+ size 14681
logs/events.out.tfevents.1711516332.DESKTOP-3M5IIL5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:876ca6fdeb58824c75835144a30bf6272f72627f777ef3359e4351e9cf901044
3
+ size 4757
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ad65ef5185b8fe4c112324da214b7bed38f28326d8159ca6a49031a8173828d3
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0daa5562b7f36a291a4a4b46c0359cc9317126800f9b771185e1dbef9ff64c6e
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff