rickysk's picture
update model card README.md
1978f69
|
raw
history blame
2.35 kB
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3230
  • Accuracy: 0.8968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1200

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1382 0.06 75 2.1056 0.2571
0.8185 1.06 150 0.6270 0.8
0.5221 2.06 225 0.4341 0.8
0.1069 3.06 300 0.4390 0.8714
0.0195 4.06 375 0.2938 0.8571
0.0097 5.06 450 0.2114 0.9
0.0076 6.06 525 0.1509 0.9429
0.1686 7.06 600 0.2527 0.9571
0.0679 8.06 675 0.0615 0.9714
0.0024 9.06 750 0.1589 0.9429
0.1946 10.06 825 0.4014 0.9
0.154 11.06 900 0.1862 0.9429
0.0021 12.06 975 0.0683 0.9857
0.0019 13.06 1050 0.0541 0.9857
0.002 14.06 1125 0.0473 0.9857
0.0018 15.06 1200 0.0475 0.9857

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3