File size: 1,959 Bytes
9398c7e 4c7f689 9398c7e 4c7f689 9398c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: indolem/indobertweet-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: indo_sentiment_indobertbdc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# indo_sentiment_indobertbdc
This model is a fine-tuned version of [indolem/indobertweet-base-uncased](https://huggingface.co/indolem/indobertweet-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8126
- Accuracy: 0.8084
- Precision: 0.6069
- Recall: 0.5793
- F1: 0.5901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.9638 | 1.0 | 110 | 0.6687 | 0.7924 | 0.5699 | 0.5100 | 0.5153 |
| 0.6061 | 2.0 | 220 | 0.6614 | 0.7884 | 0.5350 | 0.5561 | 0.5396 |
| 0.3434 | 3.0 | 330 | 0.6861 | 0.8044 | 0.6046 | 0.5626 | 0.5722 |
| 0.2047 | 4.0 | 440 | 0.8285 | 0.8094 | 0.6068 | 0.5642 | 0.5743 |
| 0.1149 | 5.0 | 550 | 0.8126 | 0.8084 | 0.6069 | 0.5793 | 0.5901 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|