--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8338171262699564 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4653 - Accuracy: 0.8338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.8849 | 1.0 | 97 | 0.6836 | 0.8586 | | 0.7461 | 2.0 | 194 | 0.7678 | 0.6177 | | 0.6429 | 3.0 | 291 | 0.7881 | 0.5690 | | 0.6522 | 4.0 | 388 | 0.7968 | 0.5325 | | 0.6189 | 5.0 | 485 | 0.8084 | 0.5213 | | 0.6045 | 6.0 | 582 | 0.5242 | 0.8099 | | 0.5851 | 7.0 | 679 | 0.5081 | 0.8157 | | 0.5268 | 8.0 | 776 | 0.4941 | 0.8193 | | 0.5269 | 9.0 | 873 | 0.4589 | 0.8295 | | 0.556 | 10.0 | 970 | 0.4653 | 0.8338 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1 - Datasets 2.15.0 - Tokenizers 0.15.0