--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Base Hi - Full fine tuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: hi split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 46.02260963186882 --- # Whisper Base Hi - Full fine tuned This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5202 - Wer: 46.0226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2093 | 2.3641 | 1000 | 0.4135 | 48.6273 | | 0.0898 | 4.7281 | 2000 | 0.4273 | 45.7038 | | 0.0279 | 7.0922 | 3000 | 0.4794 | 45.6334 | | 0.0166 | 9.4563 | 4000 | 0.5202 | 46.0226 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1