File size: 3,362 Bytes
29827fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
metrics:
- accuracy
- precision
- recall
model-index:
- name: Mistral_7B_MT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral_7B_MT

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8388
- Accuracy: 0.8167
- Precision: 0.8519
- Recall: 0.7667
- F1 score: 0.8070

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Accuracy | F1 score | Precision | Recall | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:--------:|:---------:|:------:|:---------------:|
| 1.687         | 0.25  | 200  | 0.6233   | 0.4378   | 0.8627    | 0.2933 | 2.0030          |
| 0.9482        | 0.5   | 400  | 0.68     | 0.5616   | 0.8913    | 0.41   | 1.4557          |
| 0.9232        | 0.75  | 600  | 0.72     | 0.6471   | 0.875     | 0.5133 | 0.8805          |
| 0.7781        | 1.0   | 800  | 0.57     | 0.3246   | 0.7561    | 0.2067 | 1.4515          |
| 0.5468        | 1.25  | 1000 | 0.7233   | 0.6483   | 0.8895    | 0.51   | 0.8474          |
| 0.5549        | 1.5   | 1200 | 0.7767   | 0.7403   | 0.8843    | 0.6367 | 0.7168          |
| 0.4883        | 1.75  | 1400 | 0.8      | 0.7719   | 0.8982    | 0.6767 | 0.6943          |
| 0.4639        | 2.0   | 1600 | 0.7767   | 0.7276   | 0.9323    | 0.5967 | 0.7637          |
| 0.3804        | 2.25  | 1800 | 0.7617   | 0.7146   | 0.8905    | 0.5967 | 0.8467          |
| 0.3847        | 2.5   | 2000 | 0.81     | 0.7942   | 0.8661    | 0.7333 | 0.6699          |
| 0.346         | 2.75  | 2200 | 0.7833   | 0.7575   | 0.8602    | 0.6767 | 0.8569          |
| 0.3488        | 3.0   | 2400 | 0.7824   | 0.815    | 0.9238    | 0.6867 | 0.7878          |
| 0.2654        | 3.25  | 2600 | 1.0799   | 0.7683   | 0.9259    | 0.5833 | 0.7157          |
| 0.2506        | 3.5   | 2800 | 0.8567   | 0.8033   | 0.9062    | 0.6767 | 0.7748          |
| 0.2574        | 3.75  | 3000 | 0.7490   | 0.8083   | 0.7846    | 0.85   | 0.816           |
| 0.2137        | 4.0   | 3200 | 0.7665   | 0.8333   | 0.8546    | 0.8033 | 0.8282          |
| 0.1335        | 4.25  | 3400 | 0.8591   | 0.8133   | 0.8013    | 0.8333 | 0.8170          |
| 0.1486        | 4.5   | 3600 | 0.9781   | 0.83     | 0.9091    | 0.7333 | 0.8118          |
| 0.126         | 4.75  | 3800 | 0.8723   | 0.8217   | 0.8642    | 0.7633 | 0.8106          |
| 0.1474        | 5.0   | 4000 | 0.8388   | 0.8167   | 0.8519    | 0.7667 | 0.8070          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1