--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: Qwen/Qwen2-7B metrics: - accuracy - precision - recall model-index: - name: llama2-7B_final_MT results: [] --- # llama2-7B_final_MT This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5523 - Accuracy: 0.8117 - Precision: 0.7913 - Recall: 0.8467 - F1 score: 0.8180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.8396 | 0.5 | 200 | 0.8733 | 0.645 | 0.6064 | 0.8267 | 0.6996 | | 0.6541 | 1.0 | 400 | 0.6882 | 0.695 | 0.7127 | 0.6533 | 0.6817 | | 0.4601 | 1.5 | 600 | 0.6691 | 0.7067 | 0.6505 | 0.8933 | 0.7528 | | 0.4437 | 2.0 | 800 | 0.5010 | 0.7833 | 0.7690 | 0.81 | 0.7890 | | 0.3406 | 2.5 | 1000 | 0.5010 | 0.7767 | 0.7823 | 0.7667 | 0.7744 | | 0.2919 | 3.0 | 1200 | 0.4927 | 0.8117 | 0.8127 | 0.81 | 0.8114 | | 0.2219 | 3.5 | 1400 | 0.4971 | 0.8217 | 0.8044 | 0.85 | 0.8266 | | 0.2154 | 4.0 | 1600 | 0.6404 | 0.7633 | 0.7147 | 0.8767 | 0.7874 | | 0.1381 | 4.5 | 1800 | 0.5391 | 0.815 | 0.8 | 0.84 | 0.8195 | | 0.1531 | 5.0 | 2000 | 0.5523 | 0.8117 | 0.7913 | 0.8467 | 0.8180 | ### Framework versions - PEFT 0.11.1 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1