rishitunu commited on
Commit
cbda0d1
1 Parent(s): 4dba0aa

Model save

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b5
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: FINAL_ecc_segformer
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # FINAL_ecc_segformer
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0749
19
+ - Mean Iou: 0.1968
20
+ - Mean Accuracy: 0.3939
21
+ - Overall Accuracy: 0.3939
22
+ - Accuracy Background: nan
23
+ - Accuracy Crack: 0.3939
24
+ - Iou Background: 0.0
25
+ - Iou Crack: 0.3936
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 2
46
+ - eval_batch_size: 2
47
+ - seed: 1337
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: polynomial
50
+ - training_steps: 10000
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
56
+ | 0.0534 | 1.0 | 548 | 0.0614 | 0.1368 | 0.2750 | 0.2750 | nan | 0.2750 | 0.0 | 0.2736 |
57
+ | 0.058 | 2.0 | 1096 | 0.1018 | 0.2093 | 0.4238 | 0.4238 | nan | 0.4238 | 0.0 | 0.4186 |
58
+ | 0.0482 | 3.0 | 1644 | 0.0508 | 0.1791 | 0.4315 | 0.4315 | nan | 0.4315 | 0.0 | 0.3582 |
59
+ | 0.0338 | 4.0 | 2192 | 0.0569 | 0.1849 | 0.3716 | 0.3716 | nan | 0.3716 | 0.0 | 0.3698 |
60
+ | 0.0395 | 5.0 | 2740 | 0.0597 | 0.1745 | 0.3506 | 0.3506 | nan | 0.3506 | 0.0 | 0.3490 |
61
+ | 0.0372 | 6.0 | 3288 | 0.0509 | 0.2298 | 0.4635 | 0.4635 | nan | 0.4635 | 0.0 | 0.4597 |
62
+ | 0.0402 | 7.0 | 3836 | 0.0620 | 0.1751 | 0.3507 | 0.3507 | nan | 0.3507 | 0.0 | 0.3503 |
63
+ | 0.038 | 8.0 | 4384 | 0.0681 | 0.1905 | 0.3815 | 0.3815 | nan | 0.3815 | 0.0 | 0.3810 |
64
+ | 0.0393 | 9.0 | 4932 | 0.0685 | 0.2213 | 0.4433 | 0.4433 | nan | 0.4433 | 0.0 | 0.4425 |
65
+ | 0.0376 | 10.0 | 5480 | 0.0590 | 0.1962 | 0.3929 | 0.3929 | nan | 0.3929 | 0.0 | 0.3924 |
66
+ | 0.0381 | 11.0 | 6028 | 0.0626 | 0.1891 | 0.3801 | 0.3801 | nan | 0.3801 | 0.0 | 0.3783 |
67
+ | 0.034 | 12.0 | 6576 | 0.0623 | 0.2061 | 0.4162 | 0.4162 | nan | 0.4162 | 0.0 | 0.4122 |
68
+ | 0.0301 | 13.0 | 7124 | 0.0831 | 0.1832 | 0.3669 | 0.3669 | nan | 0.3669 | 0.0 | 0.3664 |
69
+ | 0.034 | 14.0 | 7672 | 0.0636 | 0.2059 | 0.4119 | 0.4119 | nan | 0.4119 | 0.0 | 0.4118 |
70
+ | 0.0303 | 15.0 | 8220 | 0.0705 | 0.1931 | 0.3864 | 0.3864 | nan | 0.3864 | 0.0 | 0.3862 |
71
+ | 0.0338 | 16.0 | 8768 | 0.0685 | 0.2101 | 0.4206 | 0.4206 | nan | 0.4206 | 0.0 | 0.4202 |
72
+ | 0.0229 | 17.0 | 9316 | 0.0706 | 0.2099 | 0.4204 | 0.4204 | nan | 0.4204 | 0.0 | 0.4197 |
73
+ | 0.0337 | 18.0 | 9864 | 0.0742 | 0.1982 | 0.3968 | 0.3968 | nan | 0.3968 | 0.0 | 0.3965 |
74
+ | 0.0257 | 18.25 | 10000 | 0.0749 | 0.1968 | 0.3939 | 0.3939 | nan | 0.3939 | 0.0 | 0.3936 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.34.1
80
+ - Pytorch 2.1.0+cpu
81
+ - Datasets 2.14.6
82
+ - Tokenizers 0.14.1