Model save
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b5
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: FINAL_ecc_segformer
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# FINAL_ecc_segformer
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0749
|
19 |
+
- Mean Iou: 0.1968
|
20 |
+
- Mean Accuracy: 0.3939
|
21 |
+
- Overall Accuracy: 0.3939
|
22 |
+
- Accuracy Background: nan
|
23 |
+
- Accuracy Crack: 0.3939
|
24 |
+
- Iou Background: 0.0
|
25 |
+
- Iou Crack: 0.3936
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 6e-05
|
45 |
+
- train_batch_size: 2
|
46 |
+
- eval_batch_size: 2
|
47 |
+
- seed: 1337
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: polynomial
|
50 |
+
- training_steps: 10000
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
|
56 |
+
| 0.0534 | 1.0 | 548 | 0.0614 | 0.1368 | 0.2750 | 0.2750 | nan | 0.2750 | 0.0 | 0.2736 |
|
57 |
+
| 0.058 | 2.0 | 1096 | 0.1018 | 0.2093 | 0.4238 | 0.4238 | nan | 0.4238 | 0.0 | 0.4186 |
|
58 |
+
| 0.0482 | 3.0 | 1644 | 0.0508 | 0.1791 | 0.4315 | 0.4315 | nan | 0.4315 | 0.0 | 0.3582 |
|
59 |
+
| 0.0338 | 4.0 | 2192 | 0.0569 | 0.1849 | 0.3716 | 0.3716 | nan | 0.3716 | 0.0 | 0.3698 |
|
60 |
+
| 0.0395 | 5.0 | 2740 | 0.0597 | 0.1745 | 0.3506 | 0.3506 | nan | 0.3506 | 0.0 | 0.3490 |
|
61 |
+
| 0.0372 | 6.0 | 3288 | 0.0509 | 0.2298 | 0.4635 | 0.4635 | nan | 0.4635 | 0.0 | 0.4597 |
|
62 |
+
| 0.0402 | 7.0 | 3836 | 0.0620 | 0.1751 | 0.3507 | 0.3507 | nan | 0.3507 | 0.0 | 0.3503 |
|
63 |
+
| 0.038 | 8.0 | 4384 | 0.0681 | 0.1905 | 0.3815 | 0.3815 | nan | 0.3815 | 0.0 | 0.3810 |
|
64 |
+
| 0.0393 | 9.0 | 4932 | 0.0685 | 0.2213 | 0.4433 | 0.4433 | nan | 0.4433 | 0.0 | 0.4425 |
|
65 |
+
| 0.0376 | 10.0 | 5480 | 0.0590 | 0.1962 | 0.3929 | 0.3929 | nan | 0.3929 | 0.0 | 0.3924 |
|
66 |
+
| 0.0381 | 11.0 | 6028 | 0.0626 | 0.1891 | 0.3801 | 0.3801 | nan | 0.3801 | 0.0 | 0.3783 |
|
67 |
+
| 0.034 | 12.0 | 6576 | 0.0623 | 0.2061 | 0.4162 | 0.4162 | nan | 0.4162 | 0.0 | 0.4122 |
|
68 |
+
| 0.0301 | 13.0 | 7124 | 0.0831 | 0.1832 | 0.3669 | 0.3669 | nan | 0.3669 | 0.0 | 0.3664 |
|
69 |
+
| 0.034 | 14.0 | 7672 | 0.0636 | 0.2059 | 0.4119 | 0.4119 | nan | 0.4119 | 0.0 | 0.4118 |
|
70 |
+
| 0.0303 | 15.0 | 8220 | 0.0705 | 0.1931 | 0.3864 | 0.3864 | nan | 0.3864 | 0.0 | 0.3862 |
|
71 |
+
| 0.0338 | 16.0 | 8768 | 0.0685 | 0.2101 | 0.4206 | 0.4206 | nan | 0.4206 | 0.0 | 0.4202 |
|
72 |
+
| 0.0229 | 17.0 | 9316 | 0.0706 | 0.2099 | 0.4204 | 0.4204 | nan | 0.4204 | 0.0 | 0.4197 |
|
73 |
+
| 0.0337 | 18.0 | 9864 | 0.0742 | 0.1982 | 0.3968 | 0.3968 | nan | 0.3968 | 0.0 | 0.3965 |
|
74 |
+
| 0.0257 | 18.25 | 10000 | 0.0749 | 0.1968 | 0.3939 | 0.3939 | nan | 0.3939 | 0.0 | 0.3936 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.34.1
|
80 |
+
- Pytorch 2.1.0+cpu
|
81 |
+
- Datasets 2.14.6
|
82 |
+
- Tokenizers 0.14.1
|