layoutlm-funsd / README.md
ritutweets46's picture
End of training
a166494 verified
|
raw
history blame
9.35 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0745
  • Answer: {'precision': 0.3554006968641115, 'recall': 0.5043263288009888, 'f1': 0.41696474195196725, 'number': 809}
  • Header: {'precision': 0.3411764705882353, 'recall': 0.24369747899159663, 'f1': 0.28431372549019607, 'number': 119}
  • Question: {'precision': 0.4910979228486647, 'recall': 0.6215962441314554, 'f1': 0.5486945710733527, 'number': 1065}
  • Overall Precision: 0.4258
  • Overall Recall: 0.5514
  • Overall F1: 0.4805
  • Overall Accuracy: 0.6117

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7729 1.0 10 1.5447 {'precision': 0.04415584415584416, 'recall': 0.042027194066749075, 'f1': 0.04306523115896137, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.22091584158415842, 'recall': 0.3352112676056338, 'f1': 0.26631853785900783, 'number': 1065} 0.1639 0.1962 0.1786 0.3568
1.4627 2.0 20 1.3779 {'precision': 0.12121212121212122, 'recall': 0.2373300370828183, 'f1': 0.16046803175929797, 'number': 809} {'precision': 0.04081632653061224, 'recall': 0.01680672268907563, 'f1': 0.023809523809523808, 'number': 119} {'precision': 0.23460246360582307, 'recall': 0.39342723004694835, 'f1': 0.293931953700456, 'number': 1065} 0.1793 0.3076 0.2265 0.4108
1.2914 3.0 30 1.2345 {'precision': 0.15814696485623003, 'recall': 0.24474660074165636, 'f1': 0.19213973799126638, 'number': 809} {'precision': 0.15789473684210525, 'recall': 0.12605042016806722, 'f1': 0.14018691588785046, 'number': 119} {'precision': 0.31094527363184077, 'recall': 0.5868544600938967, 'f1': 0.4065040650406504, 'number': 1065} 0.2496 0.4205 0.3133 0.4524
1.1698 4.0 40 1.1615 {'precision': 0.2040990606319385, 'recall': 0.2954264524103832, 'f1': 0.2414141414141414, 'number': 809} {'precision': 0.19387755102040816, 'recall': 0.15966386554621848, 'f1': 0.17511520737327188, 'number': 119} {'precision': 0.351129363449692, 'recall': 0.6422535211267606, 'f1': 0.4540325257218719, 'number': 1065} 0.2928 0.4727 0.3616 0.4925
1.096 5.0 50 1.1141 {'precision': 0.22423802612481858, 'recall': 0.3819530284301607, 'f1': 0.28257887517146774, 'number': 809} {'precision': 0.2682926829268293, 'recall': 0.18487394957983194, 'f1': 0.21890547263681595, 'number': 119} {'precision': 0.3757159221076747, 'recall': 0.615962441314554, 'f1': 0.4667378157239417, 'number': 1065} 0.3079 0.4952 0.3797 0.5360
1.0157 6.0 60 1.0480 {'precision': 0.27807900852052675, 'recall': 0.4437577255871446, 'f1': 0.34190476190476193, 'number': 809} {'precision': 0.3013698630136986, 'recall': 0.18487394957983194, 'f1': 0.22916666666666669, 'number': 119} {'precision': 0.45481049562682213, 'recall': 0.5859154929577465, 'f1': 0.512105047189167, 'number': 1065} 0.3673 0.5043 0.4250 0.5881
0.9412 7.0 70 1.0314 {'precision': 0.29177057356608477, 'recall': 0.4338689740420272, 'f1': 0.34890656063618286, 'number': 809} {'precision': 0.2926829268292683, 'recall': 0.20168067226890757, 'f1': 0.23880597014925373, 'number': 119} {'precision': 0.45625451916124365, 'recall': 0.5924882629107981, 'f1': 0.5155228758169934, 'number': 1065} 0.3771 0.5048 0.4317 0.5961
0.8828 8.0 80 1.0804 {'precision': 0.3174061433447099, 'recall': 0.45982694684796044, 'f1': 0.37556789500252397, 'number': 809} {'precision': 0.2828282828282828, 'recall': 0.23529411764705882, 'f1': 0.25688073394495414, 'number': 119} {'precision': 0.46117804551539493, 'recall': 0.6469483568075117, 'f1': 0.5384915982805784, 'number': 1065} 0.3939 0.5464 0.4578 0.5872
0.8304 9.0 90 1.0436 {'precision': 0.3404255319148936, 'recall': 0.49443757725587145, 'f1': 0.40322580645161293, 'number': 809} {'precision': 0.36363636363636365, 'recall': 0.23529411764705882, 'f1': 0.2857142857142857, 'number': 119} {'precision': 0.4878765613519471, 'recall': 0.6234741784037559, 'f1': 0.5474031327287716, 'number': 1065} 0.4179 0.5479 0.4742 0.6095
0.814 10.0 100 1.0871 {'precision': 0.3464391691394659, 'recall': 0.5772558714462299, 'f1': 0.4330088085303662, 'number': 809} {'precision': 0.4166666666666667, 'recall': 0.25210084033613445, 'f1': 0.31413612565445026, 'number': 119} {'precision': 0.5084294587400178, 'recall': 0.5380281690140845, 'f1': 0.5228102189781022, 'number': 1065} 0.4201 0.5369 0.4714 0.5989
0.7273 11.0 110 1.0650 {'precision': 0.3483348334833483, 'recall': 0.4783683559950556, 'f1': 0.40312499999999996, 'number': 809} {'precision': 0.30434782608695654, 'recall': 0.23529411764705882, 'f1': 0.2654028436018957, 'number': 119} {'precision': 0.4900953778429934, 'recall': 0.6272300469483568, 'f1': 0.5502471169686985, 'number': 1065} 0.4221 0.5434 0.4751 0.6139
0.7257 12.0 120 1.1221 {'precision': 0.34212629896083135, 'recall': 0.5290482076637825, 'f1': 0.41553398058252433, 'number': 809} {'precision': 0.38666666666666666, 'recall': 0.24369747899159663, 'f1': 0.29896907216494845, 'number': 119} {'precision': 0.48787878787878786, 'recall': 0.6046948356807512, 'f1': 0.5400419287211741, 'number': 1065} 0.4161 0.5524 0.4747 0.6032
0.694 13.0 130 1.0688 {'precision': 0.3702451394759087, 'recall': 0.5414091470951793, 'f1': 0.43975903614457834, 'number': 809} {'precision': 0.345679012345679, 'recall': 0.23529411764705882, 'f1': 0.27999999999999997, 'number': 119} {'precision': 0.5052041633306645, 'recall': 0.5924882629107981, 'f1': 0.5453759723422645, 'number': 1065} 0.4365 0.5504 0.4869 0.6148
0.6617 14.0 140 1.0465 {'precision': 0.3598901098901099, 'recall': 0.4857849196538937, 'f1': 0.41346659652814305, 'number': 809} {'precision': 0.3411764705882353, 'recall': 0.24369747899159663, 'f1': 0.28431372549019607, 'number': 119} {'precision': 0.48916184971098264, 'recall': 0.6356807511737089, 'f1': 0.5528787260106166, 'number': 1065} 0.4291 0.5514 0.4827 0.6191
0.6536 15.0 150 1.0745 {'precision': 0.3554006968641115, 'recall': 0.5043263288009888, 'f1': 0.41696474195196725, 'number': 809} {'precision': 0.3411764705882353, 'recall': 0.24369747899159663, 'f1': 0.28431372549019607, 'number': 119} {'precision': 0.4910979228486647, 'recall': 0.6215962441314554, 'f1': 0.5486945710733527, 'number': 1065} 0.4258 0.5514 0.4805 0.6117

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2