ritutweets46 commited on
Commit
060540c
1 Parent(s): 665028f

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 1.1352
21
- - Answer: {'precision': 0.38767395626242546, 'recall': 0.4820766378244747, 'f1': 0.42975206611570255, 'number': 809}
22
- - Header: {'precision': 0.3181818181818182, 'recall': 0.23529411764705882, 'f1': 0.27053140096618356, 'number': 119}
23
- - Question: {'precision': 0.4954954954954955, 'recall': 0.6197183098591549, 'f1': 0.5506883604505632, 'number': 1065}
24
- - Overall Precision: 0.4444
25
- - Overall Recall: 0.5409
26
- - Overall F1: 0.4879
27
- - Overall Accuracy: 0.6048
28
 
29
  ## Model description
30
 
@@ -49,27 +49,17 @@ The following hyperparameters were used during training:
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
- - num_epochs: 15
53
 
54
  ### Training results
55
 
56
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
- |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
- | 1.7173 | 1.0 | 10 | 1.5055 | {'precision': 0.036076662908680945, 'recall': 0.03955500618046971, 'f1': 0.03773584905660377, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2727272727272727, 'recall': 0.18873239436619718, 'f1': 0.22308546059933407, 'number': 1065} | 0.1435 | 0.1169 | 0.1288 | 0.3597 |
59
- | 1.4183 | 2.0 | 20 | 1.3144 | {'precision': 0.18861414606095459, 'recall': 0.4054388133498146, 'f1': 0.2574568288854003, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.24258404746209625, 'recall': 0.3455399061032864, 'f1': 0.28505034856700234, 'number': 1065} | 0.2136 | 0.3492 | 0.2650 | 0.4353 |
60
- | 1.257 | 3.0 | 30 | 1.1761 | {'precision': 0.2615723732549596, 'recall': 0.4400494437577256, 'f1': 0.32811059907834106, 'number': 809} | {'precision': 0.05, 'recall': 0.01680672268907563, 'f1': 0.025157232704402517, 'number': 119} | {'precision': 0.36586863106200124, 'recall': 0.5596244131455399, 'f1': 0.44246473645137346, 'number': 1065} | 0.3149 | 0.4787 | 0.3799 | 0.5312 |
61
- | 1.1319 | 4.0 | 40 | 1.0879 | {'precision': 0.3036978756884343, 'recall': 0.47713226205191595, 'f1': 0.3711538461538461, 'number': 809} | {'precision': 0.2345679012345679, 'recall': 0.15966386554621848, 'f1': 0.18999999999999997, 'number': 119} | {'precision': 0.42283464566929135, 'recall': 0.504225352112676, 'f1': 0.4599571734475375, 'number': 1065} | 0.3593 | 0.4727 | 0.4082 | 0.5793 |
62
- | 1.0046 | 5.0 | 50 | 1.1292 | {'precision': 0.32560137457044674, 'recall': 0.4684796044499382, 'f1': 0.38418651799290426, 'number': 809} | {'precision': 0.25301204819277107, 'recall': 0.17647058823529413, 'f1': 0.20792079207920794, 'number': 119} | {'precision': 0.4408831908831909, 'recall': 0.5812206572769953, 'f1': 0.5014175779667881, 'number': 1065} | 0.3844 | 0.5113 | 0.4388 | 0.5817 |
63
- | 0.9305 | 6.0 | 60 | 1.1583 | {'precision': 0.3395311236863379, 'recall': 0.519159456118665, 'f1': 0.41055718475073316, 'number': 809} | {'precision': 0.2835820895522388, 'recall': 0.15966386554621848, 'f1': 0.2043010752688172, 'number': 119} | {'precision': 0.4719387755102041, 'recall': 0.5211267605633803, 'f1': 0.49531459170013387, 'number': 1065} | 0.4008 | 0.4987 | 0.4444 | 0.5817 |
64
- | 0.8843 | 7.0 | 70 | 1.1142 | {'precision': 0.32987551867219916, 'recall': 0.3930778739184178, 'f1': 0.3587140439932318, 'number': 809} | {'precision': 0.25287356321839083, 'recall': 0.18487394957983194, 'f1': 0.21359223300970878, 'number': 119} | {'precision': 0.41626794258373206, 'recall': 0.6535211267605634, 'f1': 0.5085860431128973, 'number': 1065} | 0.3805 | 0.5198 | 0.4394 | 0.5831 |
65
- | 0.8326 | 8.0 | 80 | 1.0891 | {'precision': 0.33364661654135336, 'recall': 0.4388133498145859, 'f1': 0.3790710090763481, 'number': 809} | {'precision': 0.26582278481012656, 'recall': 0.17647058823529413, 'f1': 0.2121212121212121, 'number': 119} | {'precision': 0.42464040025015637, 'recall': 0.6375586854460094, 'f1': 0.5097597597597597, 'number': 1065} | 0.3848 | 0.5294 | 0.4456 | 0.5943 |
66
- | 0.7867 | 9.0 | 90 | 1.1168 | {'precision': 0.36489151873767256, 'recall': 0.4573547589616811, 'f1': 0.40592430060340096, 'number': 809} | {'precision': 0.27835051546391754, 'recall': 0.226890756302521, 'f1': 0.25, 'number': 119} | {'precision': 0.4975845410628019, 'recall': 0.5802816901408451, 'f1': 0.5357607282184654, 'number': 1065} | 0.4314 | 0.5093 | 0.4671 | 0.5919 |
67
- | 0.7846 | 10.0 | 100 | 1.1754 | {'precision': 0.38025415444770283, 'recall': 0.48084054388133496, 'f1': 0.42467248908296945, 'number': 809} | {'precision': 0.3614457831325301, 'recall': 0.25210084033613445, 'f1': 0.297029702970297, 'number': 119} | {'precision': 0.5054945054945055, 'recall': 0.5615023474178403, 'f1': 0.5320284697508897, 'number': 1065} | 0.4443 | 0.5103 | 0.4750 | 0.5923 |
68
- | 0.711 | 11.0 | 110 | 1.1427 | {'precision': 0.3814968814968815, 'recall': 0.453646477132262, 'f1': 0.41445511010728403, 'number': 809} | {'precision': 0.32967032967032966, 'recall': 0.25210084033613445, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.4864667154352597, 'recall': 0.6244131455399061, 'f1': 0.5468750000000001, 'number': 1065} | 0.4388 | 0.5329 | 0.4813 | 0.6085 |
69
- | 0.7118 | 12.0 | 120 | 1.1172 | {'precision': 0.36363636363636365, 'recall': 0.4796044499381953, 'f1': 0.4136460554371002, 'number': 809} | {'precision': 0.3764705882352941, 'recall': 0.2689075630252101, 'f1': 0.3137254901960785, 'number': 119} | {'precision': 0.47493036211699163, 'recall': 0.64037558685446, 'f1': 0.5453818472610956, 'number': 1065} | 0.4258 | 0.5529 | 0.4811 | 0.6020 |
70
- | 0.6891 | 13.0 | 130 | 1.1580 | {'precision': 0.3810375670840787, 'recall': 0.5265760197775031, 'f1': 0.44213803840166066, 'number': 809} | {'precision': 0.3146067415730337, 'recall': 0.23529411764705882, 'f1': 0.2692307692307692, 'number': 119} | {'precision': 0.5264527320034692, 'recall': 0.5699530516431925, 'f1': 0.5473399458972048, 'number': 1065} | 0.4496 | 0.5324 | 0.4875 | 0.6035 |
71
- | 0.6544 | 14.0 | 140 | 1.1198 | {'precision': 0.38986556359875907, 'recall': 0.46600741656365885, 'f1': 0.4245495495495496, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.24369747899159663, 'f1': 0.2815533980582524, 'number': 119} | {'precision': 0.48421807747489237, 'recall': 0.6338028169014085, 'f1': 0.5490036600244002, 'number': 1065} | 0.4416 | 0.5424 | 0.4868 | 0.6037 |
72
- | 0.6515 | 15.0 | 150 | 1.1352 | {'precision': 0.38767395626242546, 'recall': 0.4820766378244747, 'f1': 0.42975206611570255, 'number': 809} | {'precision': 0.3181818181818182, 'recall': 0.23529411764705882, 'f1': 0.27053140096618356, 'number': 119} | {'precision': 0.4954954954954955, 'recall': 0.6197183098591549, 'f1': 0.5506883604505632, 'number': 1065} | 0.4444 | 0.5409 | 0.4879 | 0.6048 |
73
 
74
 
75
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 1.1882
21
+ - Answer: {'precision': 0.24169381107491858, 'recall': 0.45859085290482077, 'f1': 0.31655290102389083, 'number': 809}
22
+ - Header: {'precision': 0.08955223880597014, 'recall': 0.05042016806722689, 'f1': 0.06451612903225806, 'number': 119}
23
+ - Question: {'precision': 0.35651074589127685, 'recall': 0.5295774647887324, 'f1': 0.4261428031734038, 'number': 1065}
24
+ - Overall Precision: 0.2955
25
+ - Overall Recall: 0.4722
26
+ - Overall F1: 0.3635
27
+ - Overall Accuracy: 0.4847
28
 
29
  ## Model description
30
 
 
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.735 | 1.0 | 10 | 1.5463 | {'precision': 0.034482758620689655, 'recall': 0.014833127317676144, 'f1': 0.02074330164217805, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3490990990990991, 'recall': 0.14553990610328638, 'f1': 0.20543406229290923, 'number': 1065} | 0.2109 | 0.0838 | 0.1199 | 0.3216 |
59
+ | 1.4649 | 2.0 | 20 | 1.3745 | {'precision': 0.16110761485210826, 'recall': 0.3164400494437577, 'f1': 0.21351125938281904, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2809198259788689, 'recall': 0.4244131455399061, 'f1': 0.3380703066566941, 'number': 1065} | 0.2213 | 0.3552 | 0.2727 | 0.4138 |
60
+ | 1.3282 | 3.0 | 30 | 1.2410 | {'precision': 0.21228710462287104, 'recall': 0.43139678615574784, 'f1': 0.2845495311863025, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.31901840490797545, 'recall': 0.48826291079812206, 'f1': 0.38589981447124305, 'number': 1065} | 0.2635 | 0.4360 | 0.3285 | 0.4488 |
61
+ | 1.2317 | 4.0 | 40 | 1.2269 | {'precision': 0.2410941475826972, 'recall': 0.4684796044499382, 'f1': 0.3183536329273415, 'number': 809} | {'precision': 0.07142857142857142, 'recall': 0.03361344537815126, 'f1': 0.045714285714285714, 'number': 119} | {'precision': 0.34568690095846644, 'recall': 0.507981220657277, 'f1': 0.41140684410646383, 'number': 1065} | 0.2894 | 0.4636 | 0.3563 | 0.4598 |
62
+ | 1.1794 | 5.0 | 50 | 1.1882 | {'precision': 0.24169381107491858, 'recall': 0.45859085290482077, 'f1': 0.31655290102389083, 'number': 809} | {'precision': 0.08955223880597014, 'recall': 0.05042016806722689, 'f1': 0.06451612903225806, 'number': 119} | {'precision': 0.35651074589127685, 'recall': 0.5295774647887324, 'f1': 0.4261428031734038, 'number': 1065} | 0.2955 | 0.4722 | 0.3635 | 0.4847 |
 
 
 
 
 
 
 
 
 
 
63
 
64
 
65
  ### Framework versions
logs/events.out.tfevents.1710831582.ccc3f2fe76fd.4084.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7112b1252e53084999c22e393330880a1c7e452f8142f0afd1233ab91c411fe
3
- size 7623
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:335877eb3cdeeed0453d45f4a3565a3cee8b17286e823a4af21b9517abfe42a4
3
+ size 8673
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f24d8d038d3432b0b99514ac9179cb7b86dc3fe0516db90e09f38fe63fb71aff
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fcdca9b04cbbe9d94788fa01a35204cef9db0ed816e3c449a3045229d1fc149
3
  size 450558212
tokenizer.json CHANGED
@@ -1,21 +1,7 @@
1
  {
2
  "version": "1.0",
3
- "truncation": {
4
- "direction": "Right",
5
- "max_length": 512,
6
- "strategy": "LongestFirst",
7
- "stride": 0
8
- },
9
- "padding": {
10
- "strategy": {
11
- "Fixed": 512
12
- },
13
- "direction": "Right",
14
- "pad_to_multiple_of": null,
15
- "pad_id": 0,
16
- "pad_type_id": 0,
17
- "pad_token": "[PAD]"
18
- },
19
  "added_tokens": [
20
  {
21
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,