ritutweets46
commited on
Commit
•
422ec59
1
Parent(s):
143df34
End of training
Browse files- README.md +41 -16
- logs/events.out.tfevents.1710833485.ccc3f2fe76fd.4084.1 +2 -2
- model.safetensors +1 -1
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 1.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -49,17 +49,42 @@ The following hyperparameters were used during training:
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer
|
57 |
-
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.4247
|
21 |
+
- Answer: {'precision': 0.46065259117082535, 'recall': 0.5933250927070457, 'f1': 0.5186385737439222, 'number': 809}
|
22 |
+
- Header: {'precision': 0.2692307692307692, 'recall': 0.29411764705882354, 'f1': 0.28112449799196787, 'number': 119}
|
23 |
+
- Question: {'precision': 0.5629754860524091, 'recall': 0.6253521126760564, 'f1': 0.5925266903914591, 'number': 1065}
|
24 |
+
- Overall Precision: 0.5015
|
25 |
+
- Overall Recall: 0.5926
|
26 |
+
- Overall F1: 0.5432
|
27 |
+
- Overall Accuracy: 0.6236
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 30
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
58 |
+
| 1.719 | 1.0 | 10 | 1.5186 | {'precision': 0.05500550055005501, 'recall': 0.06180469715698393, 'f1': 0.058207217694994186, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.24500907441016334, 'recall': 0.2535211267605634, 'f1': 0.24919243193354867, 'number': 1065} | 0.1591 | 0.1606 | 0.1598 | 0.3513 |
|
59 |
+
| 1.4217 | 2.0 | 20 | 1.3567 | {'precision': 0.22399150743099788, 'recall': 0.5216316440049443, 'f1': 0.31340512439658375, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.27875793930839804, 'recall': 0.37089201877934275, 'f1': 0.3182917002417405, 'number': 1065} | 0.2475 | 0.4099 | 0.3087 | 0.4226 |
|
60 |
+
| 1.2866 | 3.0 | 30 | 1.2513 | {'precision': 0.25821287779237845, 'recall': 0.4857849196538937, 'f1': 0.3371943371943372, 'number': 809} | {'precision': 0.02564102564102564, 'recall': 0.008403361344537815, 'f1': 0.012658227848101267, 'number': 119} | {'precision': 0.353081986834231, 'recall': 0.5539906103286385, 'f1': 0.43128654970760233, 'number': 1065} | 0.3045 | 0.4937 | 0.3767 | 0.4816 |
|
61 |
+
| 1.1552 | 4.0 | 40 | 1.1240 | {'precision': 0.2970859985785359, 'recall': 0.5166872682323856, 'f1': 0.37725631768953066, 'number': 809} | {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119} | {'precision': 0.40802213001383125, 'recall': 0.5539906103286385, 'f1': 0.46993229788928714, 'number': 1065} | 0.3505 | 0.5183 | 0.4182 | 0.5663 |
|
62 |
+
| 1.0315 | 5.0 | 50 | 1.1886 | {'precision': 0.33358490566037735, 'recall': 0.546353522867738, 'f1': 0.41424554826616683, 'number': 809} | {'precision': 0.25675675675675674, 'recall': 0.15966386554621848, 'f1': 0.19689119170984457, 'number': 119} | {'precision': 0.4381443298969072, 'recall': 0.5586854460093896, 'f1': 0.49112670243499795, 'number': 1065} | 0.3830 | 0.5299 | 0.4446 | 0.5518 |
|
63 |
+
| 0.9523 | 6.0 | 60 | 1.1240 | {'precision': 0.35634743875278396, 'recall': 0.5933250927070457, 'f1': 0.4452690166975881, 'number': 809} | {'precision': 0.2558139534883721, 'recall': 0.18487394957983194, 'f1': 0.21463414634146344, 'number': 119} | {'precision': 0.48498233215547704, 'recall': 0.5154929577464789, 'f1': 0.49977241693218016, 'number': 1065} | 0.4097 | 0.5273 | 0.4612 | 0.5936 |
|
64 |
+
| 0.8561 | 7.0 | 70 | 1.0766 | {'precision': 0.37615449202350965, 'recall': 0.553770086526576, 'f1': 0.448, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.20168067226890757, 'f1': 0.23645320197044337, 'number': 119} | {'precision': 0.49523052464228934, 'recall': 0.5849765258215962, 'f1': 0.5363753766681015, 'number': 1065} | 0.4323 | 0.5494 | 0.4839 | 0.6072 |
|
65 |
+
| 0.7862 | 8.0 | 80 | 1.0865 | {'precision': 0.39285714285714285, 'recall': 0.4894932014833127, 'f1': 0.43588332416070447, 'number': 809} | {'precision': 0.31683168316831684, 'recall': 0.2689075630252101, 'f1': 0.29090909090909095, 'number': 119} | {'precision': 0.4698713608666215, 'recall': 0.6516431924882629, 'f1': 0.5460267505900864, 'number': 1065} | 0.4339 | 0.5630 | 0.4901 | 0.6163 |
|
66 |
+
| 0.7272 | 9.0 | 90 | 1.1819 | {'precision': 0.37337413925019125, 'recall': 0.6032138442521632, 'f1': 0.46124763705103966, 'number': 809} | {'precision': 0.3023255813953488, 'recall': 0.2184873949579832, 'f1': 0.25365853658536586, 'number': 119} | {'precision': 0.5397676496872207, 'recall': 0.5671361502347417, 'f1': 0.553113553113553, 'number': 1065} | 0.4451 | 0.5610 | 0.4963 | 0.6082 |
|
67 |
+
| 0.7468 | 10.0 | 100 | 1.2023 | {'precision': 0.3776325344952796, 'recall': 0.6427688504326329, 'f1': 0.4757548032936871, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.23529411764705882, 'f1': 0.26666666666666666, 'number': 119} | {'precision': 0.5464015151515151, 'recall': 0.5417840375586854, 'f1': 0.5440829797265442, 'number': 1065} | 0.4457 | 0.5645 | 0.4981 | 0.6125 |
|
68 |
+
| 0.6407 | 11.0 | 110 | 1.1119 | {'precision': 0.41081081081081083, 'recall': 0.5636588380716935, 'f1': 0.4752475247524753, 'number': 809} | {'precision': 0.3153153153153153, 'recall': 0.29411764705882354, 'f1': 0.30434782608695654, 'number': 119} | {'precision': 0.5374787052810903, 'recall': 0.5924882629107981, 'f1': 0.5636444841447075, 'number': 1065} | 0.4685 | 0.5630 | 0.5114 | 0.6186 |
|
69 |
+
| 0.6276 | 12.0 | 120 | 1.1499 | {'precision': 0.4605855855855856, 'recall': 0.5055624227441285, 'f1': 0.48202710665880966, 'number': 809} | {'precision': 0.3217391304347826, 'recall': 0.31092436974789917, 'f1': 0.3162393162393162, 'number': 119} | {'precision': 0.5130813953488372, 'recall': 0.6629107981220658, 'f1': 0.5784514543219992, 'number': 1065} | 0.4842 | 0.5780 | 0.5270 | 0.6045 |
|
70 |
+
| 0.5603 | 13.0 | 130 | 1.1774 | {'precision': 0.43646408839779005, 'recall': 0.5859085290482077, 'f1': 0.5002638522427441, 'number': 809} | {'precision': 0.2608695652173913, 'recall': 0.3025210084033613, 'f1': 0.28015564202334625, 'number': 119} | {'precision': 0.543313708999159, 'recall': 0.6065727699530516, 'f1': 0.5732031943212067, 'number': 1065} | 0.4791 | 0.5800 | 0.5247 | 0.6247 |
|
71 |
+
| 0.5174 | 14.0 | 140 | 1.1518 | {'precision': 0.4443266171792153, 'recall': 0.5179233621755254, 'f1': 0.478310502283105, 'number': 809} | {'precision': 0.288, 'recall': 0.3025210084033613, 'f1': 0.2950819672131147, 'number': 119} | {'precision': 0.511794138670479, 'recall': 0.672300469483568, 'f1': 0.5811688311688311, 'number': 1065} | 0.4747 | 0.5876 | 0.5251 | 0.6275 |
|
72 |
+
| 0.4984 | 15.0 | 150 | 1.2622 | {'precision': 0.4340309372156506, 'recall': 0.5896168108776267, 'f1': 0.5000000000000001, 'number': 809} | {'precision': 0.28695652173913044, 'recall': 0.2773109243697479, 'f1': 0.2820512820512821, 'number': 119} | {'precision': 0.5659722222222222, 'recall': 0.612206572769953, 'f1': 0.5881822282363555, 'number': 1065} | 0.4911 | 0.5830 | 0.5331 | 0.6283 |
|
73 |
+
| 0.4717 | 16.0 | 160 | 1.2309 | {'precision': 0.4291996481970097, 'recall': 0.6032138442521632, 'f1': 0.5015416238437822, 'number': 809} | {'precision': 0.288135593220339, 'recall': 0.2857142857142857, 'f1': 0.2869198312236287, 'number': 119} | {'precision': 0.5609756097560976, 'recall': 0.5615023474178403, 'f1': 0.5612388549976538, 'number': 1065} | 0.4826 | 0.5620 | 0.5192 | 0.6214 |
|
74 |
+
| 0.4414 | 17.0 | 170 | 1.2624 | {'precision': 0.4625984251968504, 'recall': 0.580964153275649, 'f1': 0.515068493150685, 'number': 809} | {'precision': 0.30578512396694213, 'recall': 0.31092436974789917, 'f1': 0.30833333333333335, 'number': 119} | {'precision': 0.5645295587010825, 'recall': 0.6366197183098592, 'f1': 0.5984112974404237, 'number': 1065} | 0.5068 | 0.5946 | 0.5472 | 0.6218 |
|
75 |
+
| 0.4089 | 18.0 | 180 | 1.2731 | {'precision': 0.4601226993865031, 'recall': 0.5562422744128553, 'f1': 0.5036373810856184, 'number': 809} | {'precision': 0.3302752293577982, 'recall': 0.3025210084033613, 'f1': 0.31578947368421045, 'number': 119} | {'precision': 0.5450310559006211, 'recall': 0.6591549295774648, 'f1': 0.5966850828729281, 'number': 1065} | 0.5002 | 0.5961 | 0.5440 | 0.6207 |
|
76 |
+
| 0.4123 | 19.0 | 190 | 1.3471 | {'precision': 0.45244956772334294, 'recall': 0.5822002472187886, 'f1': 0.5091891891891892, 'number': 809} | {'precision': 0.3177570093457944, 'recall': 0.2857142857142857, 'f1': 0.3008849557522124, 'number': 119} | {'precision': 0.5504511894995898, 'recall': 0.6300469483568075, 'f1': 0.5875656742556917, 'number': 1065} | 0.4968 | 0.5901 | 0.5394 | 0.6099 |
|
77 |
+
| 0.3827 | 20.0 | 200 | 1.3405 | {'precision': 0.4388888888888889, 'recall': 0.5859085290482077, 'f1': 0.5018528321863421, 'number': 809} | {'precision': 0.2734375, 'recall': 0.29411764705882354, 'f1': 0.2834008097165992, 'number': 119} | {'precision': 0.5659246575342466, 'recall': 0.6206572769953052, 'f1': 0.5920286609941782, 'number': 1065} | 0.4924 | 0.5871 | 0.5356 | 0.6150 |
|
78 |
+
| 0.3578 | 21.0 | 210 | 1.3585 | {'precision': 0.4352189781021898, 'recall': 0.5896168108776267, 'f1': 0.5007874015748032, 'number': 809} | {'precision': 0.28688524590163933, 'recall': 0.29411764705882354, 'f1': 0.2904564315352697, 'number': 119} | {'precision': 0.5677590788308238, 'recall': 0.6018779342723005, 'f1': 0.5843208751139473, 'number': 1065} | 0.4913 | 0.5785 | 0.5313 | 0.6173 |
|
79 |
+
| 0.3672 | 22.0 | 220 | 1.4072 | {'precision': 0.4651866801210898, 'recall': 0.5698393077873919, 'f1': 0.5122222222222222, 'number': 809} | {'precision': 0.26865671641791045, 'recall': 0.3025210084033613, 'f1': 0.2845849802371542, 'number': 119} | {'precision': 0.5686106346483705, 'recall': 0.6225352112676056, 'f1': 0.5943523083818915, 'number': 1065} | 0.5063 | 0.5820 | 0.5415 | 0.6134 |
|
80 |
+
| 0.3256 | 23.0 | 230 | 1.3906 | {'precision': 0.4444444444444444, 'recall': 0.5587144622991347, 'f1': 0.49507119386637455, 'number': 809} | {'precision': 0.25517241379310346, 'recall': 0.31092436974789917, 'f1': 0.2803030303030303, 'number': 119} | {'precision': 0.5697177074422584, 'recall': 0.6253521126760564, 'f1': 0.5962399283795882, 'number': 1065} | 0.4955 | 0.5795 | 0.5342 | 0.6059 |
|
81 |
+
| 0.3257 | 24.0 | 240 | 1.3932 | {'precision': 0.43564356435643564, 'recall': 0.5982694684796045, 'f1': 0.5041666666666667, 'number': 809} | {'precision': 0.2647058823529412, 'recall': 0.3025210084033613, 'f1': 0.2823529411764706, 'number': 119} | {'precision': 0.5610589239965841, 'recall': 0.6169014084507042, 'f1': 0.5876565295169945, 'number': 1065} | 0.4868 | 0.5906 | 0.5337 | 0.6099 |
|
82 |
+
| 0.3225 | 25.0 | 250 | 1.4026 | {'precision': 0.45896946564885494, 'recall': 0.5945611866501854, 'f1': 0.5180398492191707, 'number': 809} | {'precision': 0.2882882882882883, 'recall': 0.2689075630252101, 'f1': 0.2782608695652174, 'number': 119} | {'precision': 0.5693739424703892, 'recall': 0.631924882629108, 'f1': 0.5990209167779261, 'number': 1065} | 0.5066 | 0.5951 | 0.5473 | 0.6240 |
|
83 |
+
| 0.317 | 26.0 | 260 | 1.4381 | {'precision': 0.46397694524495675, 'recall': 0.5970333745364648, 'f1': 0.5221621621621622, 'number': 809} | {'precision': 0.28225806451612906, 'recall': 0.29411764705882354, 'f1': 0.2880658436213992, 'number': 119} | {'precision': 0.5862377122430742, 'recall': 0.615962441314554, 'f1': 0.6007326007326007, 'number': 1065} | 0.5140 | 0.5891 | 0.5490 | 0.6146 |
|
84 |
+
| 0.3098 | 27.0 | 270 | 1.4192 | {'precision': 0.46586345381526106, 'recall': 0.5735475896168108, 'f1': 0.5141274238227146, 'number': 809} | {'precision': 0.25735294117647056, 'recall': 0.29411764705882354, 'f1': 0.2745098039215686, 'number': 119} | {'precision': 0.5634146341463414, 'recall': 0.6507042253521127, 'f1': 0.6039215686274508, 'number': 1065} | 0.5047 | 0.5981 | 0.5474 | 0.6193 |
|
85 |
+
| 0.3038 | 28.0 | 280 | 1.4316 | {'precision': 0.4594078319006686, 'recall': 0.5945611866501854, 'f1': 0.5183189655172413, 'number': 809} | {'precision': 0.26515151515151514, 'recall': 0.29411764705882354, 'f1': 0.2788844621513944, 'number': 119} | {'precision': 0.5786163522012578, 'recall': 0.6046948356807512, 'f1': 0.5913682277318641, 'number': 1065} | 0.5061 | 0.5820 | 0.5414 | 0.6198 |
|
86 |
+
| 0.2984 | 29.0 | 290 | 1.4212 | {'precision': 0.45687203791469194, 'recall': 0.595797280593325, 'f1': 0.5171673819742489, 'number': 809} | {'precision': 0.2734375, 'recall': 0.29411764705882354, 'f1': 0.2834008097165992, 'number': 119} | {'precision': 0.5619694397283531, 'recall': 0.6215962441314554, 'f1': 0.5902808738296924, 'number': 1065} | 0.4994 | 0.5916 | 0.5416 | 0.6239 |
|
87 |
+
| 0.2937 | 30.0 | 300 | 1.4247 | {'precision': 0.46065259117082535, 'recall': 0.5933250927070457, 'f1': 0.5186385737439222, 'number': 809} | {'precision': 0.2692307692307692, 'recall': 0.29411764705882354, 'f1': 0.28112449799196787, 'number': 119} | {'precision': 0.5629754860524091, 'recall': 0.6253521126760564, 'f1': 0.5925266903914591, 'number': 1065} | 0.5015 | 0.5926 | 0.5432 | 0.6236 |
|
88 |
|
89 |
|
90 |
### Framework versions
|
logs/events.out.tfevents.1710833485.ccc3f2fe76fd.4084.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ccff01276c4a5f1ca2050acb37030f6dc3c2a380d7f6813e43a9c63c91ff126
|
3 |
+
size 26464
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56b5588c5ec704e7fc14b43856a1c92c2caa23b5b86a38b182f82f02ab1fdc47
|
3 |
size 450558212
|