ritutweets46 commited on
Commit
a166494
1 Parent(s): 96afe61

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.0745
21
+ - Answer: {'precision': 0.3554006968641115, 'recall': 0.5043263288009888, 'f1': 0.41696474195196725, 'number': 809}
22
+ - Header: {'precision': 0.3411764705882353, 'recall': 0.24369747899159663, 'f1': 0.28431372549019607, 'number': 119}
23
+ - Question: {'precision': 0.4910979228486647, 'recall': 0.6215962441314554, 'f1': 0.5486945710733527, 'number': 1065}
24
+ - Overall Precision: 0.4258
25
+ - Overall Recall: 0.5514
26
+ - Overall F1: 0.4805
27
+ - Overall Accuracy: 0.6117
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7729 | 1.0 | 10 | 1.5447 | {'precision': 0.04415584415584416, 'recall': 0.042027194066749075, 'f1': 0.04306523115896137, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22091584158415842, 'recall': 0.3352112676056338, 'f1': 0.26631853785900783, 'number': 1065} | 0.1639 | 0.1962 | 0.1786 | 0.3568 |
60
+ | 1.4627 | 2.0 | 20 | 1.3779 | {'precision': 0.12121212121212122, 'recall': 0.2373300370828183, 'f1': 0.16046803175929797, 'number': 809} | {'precision': 0.04081632653061224, 'recall': 0.01680672268907563, 'f1': 0.023809523809523808, 'number': 119} | {'precision': 0.23460246360582307, 'recall': 0.39342723004694835, 'f1': 0.293931953700456, 'number': 1065} | 0.1793 | 0.3076 | 0.2265 | 0.4108 |
61
+ | 1.2914 | 3.0 | 30 | 1.2345 | {'precision': 0.15814696485623003, 'recall': 0.24474660074165636, 'f1': 0.19213973799126638, 'number': 809} | {'precision': 0.15789473684210525, 'recall': 0.12605042016806722, 'f1': 0.14018691588785046, 'number': 119} | {'precision': 0.31094527363184077, 'recall': 0.5868544600938967, 'f1': 0.4065040650406504, 'number': 1065} | 0.2496 | 0.4205 | 0.3133 | 0.4524 |
62
+ | 1.1698 | 4.0 | 40 | 1.1615 | {'precision': 0.2040990606319385, 'recall': 0.2954264524103832, 'f1': 0.2414141414141414, 'number': 809} | {'precision': 0.19387755102040816, 'recall': 0.15966386554621848, 'f1': 0.17511520737327188, 'number': 119} | {'precision': 0.351129363449692, 'recall': 0.6422535211267606, 'f1': 0.4540325257218719, 'number': 1065} | 0.2928 | 0.4727 | 0.3616 | 0.4925 |
63
+ | 1.096 | 5.0 | 50 | 1.1141 | {'precision': 0.22423802612481858, 'recall': 0.3819530284301607, 'f1': 0.28257887517146774, 'number': 809} | {'precision': 0.2682926829268293, 'recall': 0.18487394957983194, 'f1': 0.21890547263681595, 'number': 119} | {'precision': 0.3757159221076747, 'recall': 0.615962441314554, 'f1': 0.4667378157239417, 'number': 1065} | 0.3079 | 0.4952 | 0.3797 | 0.5360 |
64
+ | 1.0157 | 6.0 | 60 | 1.0480 | {'precision': 0.27807900852052675, 'recall': 0.4437577255871446, 'f1': 0.34190476190476193, 'number': 809} | {'precision': 0.3013698630136986, 'recall': 0.18487394957983194, 'f1': 0.22916666666666669, 'number': 119} | {'precision': 0.45481049562682213, 'recall': 0.5859154929577465, 'f1': 0.512105047189167, 'number': 1065} | 0.3673 | 0.5043 | 0.4250 | 0.5881 |
65
+ | 0.9412 | 7.0 | 70 | 1.0314 | {'precision': 0.29177057356608477, 'recall': 0.4338689740420272, 'f1': 0.34890656063618286, 'number': 809} | {'precision': 0.2926829268292683, 'recall': 0.20168067226890757, 'f1': 0.23880597014925373, 'number': 119} | {'precision': 0.45625451916124365, 'recall': 0.5924882629107981, 'f1': 0.5155228758169934, 'number': 1065} | 0.3771 | 0.5048 | 0.4317 | 0.5961 |
66
+ | 0.8828 | 8.0 | 80 | 1.0804 | {'precision': 0.3174061433447099, 'recall': 0.45982694684796044, 'f1': 0.37556789500252397, 'number': 809} | {'precision': 0.2828282828282828, 'recall': 0.23529411764705882, 'f1': 0.25688073394495414, 'number': 119} | {'precision': 0.46117804551539493, 'recall': 0.6469483568075117, 'f1': 0.5384915982805784, 'number': 1065} | 0.3939 | 0.5464 | 0.4578 | 0.5872 |
67
+ | 0.8304 | 9.0 | 90 | 1.0436 | {'precision': 0.3404255319148936, 'recall': 0.49443757725587145, 'f1': 0.40322580645161293, 'number': 809} | {'precision': 0.36363636363636365, 'recall': 0.23529411764705882, 'f1': 0.2857142857142857, 'number': 119} | {'precision': 0.4878765613519471, 'recall': 0.6234741784037559, 'f1': 0.5474031327287716, 'number': 1065} | 0.4179 | 0.5479 | 0.4742 | 0.6095 |
68
+ | 0.814 | 10.0 | 100 | 1.0871 | {'precision': 0.3464391691394659, 'recall': 0.5772558714462299, 'f1': 0.4330088085303662, 'number': 809} | {'precision': 0.4166666666666667, 'recall': 0.25210084033613445, 'f1': 0.31413612565445026, 'number': 119} | {'precision': 0.5084294587400178, 'recall': 0.5380281690140845, 'f1': 0.5228102189781022, 'number': 1065} | 0.4201 | 0.5369 | 0.4714 | 0.5989 |
69
+ | 0.7273 | 11.0 | 110 | 1.0650 | {'precision': 0.3483348334833483, 'recall': 0.4783683559950556, 'f1': 0.40312499999999996, 'number': 809} | {'precision': 0.30434782608695654, 'recall': 0.23529411764705882, 'f1': 0.2654028436018957, 'number': 119} | {'precision': 0.4900953778429934, 'recall': 0.6272300469483568, 'f1': 0.5502471169686985, 'number': 1065} | 0.4221 | 0.5434 | 0.4751 | 0.6139 |
70
+ | 0.7257 | 12.0 | 120 | 1.1221 | {'precision': 0.34212629896083135, 'recall': 0.5290482076637825, 'f1': 0.41553398058252433, 'number': 809} | {'precision': 0.38666666666666666, 'recall': 0.24369747899159663, 'f1': 0.29896907216494845, 'number': 119} | {'precision': 0.48787878787878786, 'recall': 0.6046948356807512, 'f1': 0.5400419287211741, 'number': 1065} | 0.4161 | 0.5524 | 0.4747 | 0.6032 |
71
+ | 0.694 | 13.0 | 130 | 1.0688 | {'precision': 0.3702451394759087, 'recall': 0.5414091470951793, 'f1': 0.43975903614457834, 'number': 809} | {'precision': 0.345679012345679, 'recall': 0.23529411764705882, 'f1': 0.27999999999999997, 'number': 119} | {'precision': 0.5052041633306645, 'recall': 0.5924882629107981, 'f1': 0.5453759723422645, 'number': 1065} | 0.4365 | 0.5504 | 0.4869 | 0.6148 |
72
+ | 0.6617 | 14.0 | 140 | 1.0465 | {'precision': 0.3598901098901099, 'recall': 0.4857849196538937, 'f1': 0.41346659652814305, 'number': 809} | {'precision': 0.3411764705882353, 'recall': 0.24369747899159663, 'f1': 0.28431372549019607, 'number': 119} | {'precision': 0.48916184971098264, 'recall': 0.6356807511737089, 'f1': 0.5528787260106166, 'number': 1065} | 0.4291 | 0.5514 | 0.4827 | 0.6191 |
73
+ | 0.6536 | 15.0 | 150 | 1.0745 | {'precision': 0.3554006968641115, 'recall': 0.5043263288009888, 'f1': 0.41696474195196725, 'number': 809} | {'precision': 0.3411764705882353, 'recall': 0.24369747899159663, 'f1': 0.28431372549019607, 'number': 119} | {'precision': 0.4910979228486647, 'recall': 0.6215962441314554, 'f1': 0.5486945710733527, 'number': 1065} | 0.4258 | 0.5514 | 0.4805 | 0.6117 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.38.2
79
+ - Pytorch 2.1.0+cu121
80
+ - Datasets 2.18.0
81
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1709647988.05d8ace24c34.1074.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ed5f4a06de9c8a356627bfa9be0a07bf09f600e4e550a583cb84b7fa16e6f7e5
3
- size 14669
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e79f9aae5a0bf0684f01e536a7ac5e06bb47328ea7679ff34df8fb7b88439a75
3
+ size 15738
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7a0ed428fc728b7c37cc392f51c85c9cc66353f2ad07762a99a3558a8a427478
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44bf6b7f6c1a397fc20e2ce394c8c44a7ea9d3fbe29f9428b222a38521b2f0bc
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff