File size: 2,227 Bytes
fc8dd66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: results
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.48125
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3523
- Accuracy: 0.4813
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.093 | 1.0 | 10 | 1.8451 | 0.3312 |
| 1.4651 | 2.0 | 20 | 1.6375 | 0.3812 |
| 1.033 | 3.0 | 30 | 1.5209 | 0.3875 |
| 0.7164 | 4.0 | 40 | 1.4455 | 0.4375 |
| 0.4719 | 5.0 | 50 | 1.3971 | 0.425 |
| 0.3109 | 6.0 | 60 | 1.3746 | 0.475 |
| 0.2034 | 7.0 | 70 | 1.3600 | 0.45 |
| 0.1403 | 8.0 | 80 | 1.3523 | 0.4813 |
| 0.1074 | 9.0 | 90 | 1.3493 | 0.4813 |
| 0.0931 | 10.0 | 100 | 1.3471 | 0.475 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|