--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: results results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.575 --- # results This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3098 - Accuracy: 0.575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 1.8622 | 0.2875 | | 1.7517 | 2.0 | 20 | 1.6548 | 0.45 | | 1.7517 | 3.0 | 30 | 1.4987 | 0.4688 | | 0.8128 | 4.0 | 40 | 1.3997 | 0.5125 | | 0.8128 | 5.0 | 50 | 1.3707 | 0.5125 | | 0.2863 | 6.0 | 60 | 1.3209 | 0.525 | | 0.2863 | 7.0 | 70 | 1.3131 | 0.55 | | 0.0776 | 8.0 | 80 | 1.2887 | 0.5563 | | 0.0776 | 9.0 | 90 | 1.2996 | 0.5687 | | 0.0267 | 10.0 | 100 | 1.3032 | 0.5563 | | 0.0267 | 11.0 | 110 | 1.3003 | 0.5625 | | 0.0156 | 12.0 | 120 | 1.3069 | 0.5625 | | 0.0156 | 13.0 | 130 | 1.3039 | 0.5687 | | 0.0117 | 14.0 | 140 | 1.3037 | 0.5687 | | 0.0117 | 15.0 | 150 | 1.3059 | 0.5687 | | 0.0098 | 16.0 | 160 | 1.3098 | 0.575 | | 0.0098 | 17.0 | 170 | 1.3095 | 0.5625 | | 0.0088 | 18.0 | 180 | 1.3107 | 0.5625 | | 0.0088 | 19.0 | 190 | 1.3112 | 0.5687 | | 0.0083 | 20.0 | 200 | 1.3112 | 0.5687 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1