rk68 commited on
Commit
58610c9
1 Parent(s): fe44e1b

End of training

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: distilbert-q-classifier-2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # distilbert-q-classifier-2
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.2779
21
+ - Accuracy: 0.9421
22
+ - Precision Weighted: 0.9429
23
+ - Recall Weighted: 0.9421
24
+ - F1 Weighted: 0.9421
25
+ - Precision Macro: 0.9429
26
+ - Recall Macro: 0.9421
27
+ - F1 Macro: 0.9421
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Weighted | Recall Weighted | F1 Weighted | Precision Macro | Recall Macro | F1 Macro |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------:|:--------:|
58
+ | No log | 1.0 | 48 | 0.2252 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 |
59
+ | No log | 2.0 | 96 | 0.1682 | 0.9329 | 0.9333 | 0.9329 | 0.9329 | 0.9333 | 0.9329 | 0.9329 |
60
+ | No log | 3.0 | 144 | 0.2251 | 0.9236 | 0.9269 | 0.9236 | 0.9235 | 0.9269 | 0.9236 | 0.9235 |
61
+ | No log | 4.0 | 192 | 0.2421 | 0.9352 | 0.9376 | 0.9352 | 0.9351 | 0.9376 | 0.9352 | 0.9351 |
62
+ | No log | 5.0 | 240 | 0.2138 | 0.9375 | 0.9383 | 0.9375 | 0.9375 | 0.9383 | 0.9375 | 0.9375 |
63
+ | No log | 6.0 | 288 | 0.2165 | 0.9398 | 0.9399 | 0.9398 | 0.9398 | 0.9399 | 0.9398 | 0.9398 |
64
+ | No log | 7.0 | 336 | 0.2470 | 0.9398 | 0.9408 | 0.9398 | 0.9398 | 0.9408 | 0.9398 | 0.9398 |
65
+ | No log | 8.0 | 384 | 0.2509 | 0.9352 | 0.9353 | 0.9352 | 0.9352 | 0.9353 | 0.9352 | 0.9352 |
66
+ | No log | 9.0 | 432 | 0.2686 | 0.9352 | 0.9355 | 0.9352 | 0.9352 | 0.9355 | 0.9352 | 0.9352 |
67
+ | No log | 10.0 | 480 | 0.2779 | 0.9421 | 0.9429 | 0.9421 | 0.9421 | 0.9429 | 0.9421 | 0.9421 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.43.3
73
+ - Pytorch 2.3.1
74
+ - Datasets 2.20.0
75
+ - Tokenizers 0.19.1