End of training
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: distilbert-q-classifier-2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# distilbert-q-classifier-2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.2779
|
21 |
+
- Accuracy: 0.9421
|
22 |
+
- Precision Weighted: 0.9429
|
23 |
+
- Recall Weighted: 0.9421
|
24 |
+
- F1 Weighted: 0.9421
|
25 |
+
- Precision Macro: 0.9429
|
26 |
+
- Recall Macro: 0.9421
|
27 |
+
- F1 Macro: 0.9421
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Weighted | Recall Weighted | F1 Weighted | Precision Macro | Recall Macro | F1 Macro |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------:|:--------:|
|
58 |
+
| No log | 1.0 | 48 | 0.2252 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 |
|
59 |
+
| No log | 2.0 | 96 | 0.1682 | 0.9329 | 0.9333 | 0.9329 | 0.9329 | 0.9333 | 0.9329 | 0.9329 |
|
60 |
+
| No log | 3.0 | 144 | 0.2251 | 0.9236 | 0.9269 | 0.9236 | 0.9235 | 0.9269 | 0.9236 | 0.9235 |
|
61 |
+
| No log | 4.0 | 192 | 0.2421 | 0.9352 | 0.9376 | 0.9352 | 0.9351 | 0.9376 | 0.9352 | 0.9351 |
|
62 |
+
| No log | 5.0 | 240 | 0.2138 | 0.9375 | 0.9383 | 0.9375 | 0.9375 | 0.9383 | 0.9375 | 0.9375 |
|
63 |
+
| No log | 6.0 | 288 | 0.2165 | 0.9398 | 0.9399 | 0.9398 | 0.9398 | 0.9399 | 0.9398 | 0.9398 |
|
64 |
+
| No log | 7.0 | 336 | 0.2470 | 0.9398 | 0.9408 | 0.9398 | 0.9398 | 0.9408 | 0.9398 | 0.9398 |
|
65 |
+
| No log | 8.0 | 384 | 0.2509 | 0.9352 | 0.9353 | 0.9352 | 0.9352 | 0.9353 | 0.9352 | 0.9352 |
|
66 |
+
| No log | 9.0 | 432 | 0.2686 | 0.9352 | 0.9355 | 0.9352 | 0.9352 | 0.9355 | 0.9352 | 0.9352 |
|
67 |
+
| No log | 10.0 | 480 | 0.2779 | 0.9421 | 0.9429 | 0.9421 | 0.9421 | 0.9429 | 0.9421 | 0.9421 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.43.3
|
73 |
+
- Pytorch 2.3.1
|
74 |
+
- Datasets 2.20.0
|
75 |
+
- Tokenizers 0.19.1
|