--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-q-classifier-2 results: [] --- # distilbert-q-classifier-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2779 - Accuracy: 0.9421 - Precision Weighted: 0.9429 - Recall Weighted: 0.9421 - F1 Weighted: 0.9421 - Precision Macro: 0.9429 - Recall Macro: 0.9421 - F1 Macro: 0.9421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Weighted | Recall Weighted | F1 Weighted | Precision Macro | Recall Macro | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------:|:--------:| | No log | 1.0 | 48 | 0.2252 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | 0.9144 | | No log | 2.0 | 96 | 0.1682 | 0.9329 | 0.9333 | 0.9329 | 0.9329 | 0.9333 | 0.9329 | 0.9329 | | No log | 3.0 | 144 | 0.2251 | 0.9236 | 0.9269 | 0.9236 | 0.9235 | 0.9269 | 0.9236 | 0.9235 | | No log | 4.0 | 192 | 0.2421 | 0.9352 | 0.9376 | 0.9352 | 0.9351 | 0.9376 | 0.9352 | 0.9351 | | No log | 5.0 | 240 | 0.2138 | 0.9375 | 0.9383 | 0.9375 | 0.9375 | 0.9383 | 0.9375 | 0.9375 | | No log | 6.0 | 288 | 0.2165 | 0.9398 | 0.9399 | 0.9398 | 0.9398 | 0.9399 | 0.9398 | 0.9398 | | No log | 7.0 | 336 | 0.2470 | 0.9398 | 0.9408 | 0.9398 | 0.9398 | 0.9408 | 0.9398 | 0.9398 | | No log | 8.0 | 384 | 0.2509 | 0.9352 | 0.9353 | 0.9352 | 0.9352 | 0.9353 | 0.9352 | 0.9352 | | No log | 9.0 | 432 | 0.2686 | 0.9352 | 0.9355 | 0.9352 | 0.9352 | 0.9355 | 0.9352 | 0.9352 | | No log | 10.0 | 480 | 0.2779 | 0.9421 | 0.9429 | 0.9421 | 0.9421 | 0.9429 | 0.9421 | 0.9421 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.19.1