rmihaylov commited on
Commit
f9a90b7
1 Parent(s): dcd7b77

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - bg
5
+ license: mit
6
+ datasets:
7
+ - oscar
8
+ - chitanka
9
+ - wikipedia
10
+ tags:
11
+ - torch
12
+ ---
13
+
14
+ # ROBERTA-TO-ROBERTA EncoderDecoder with Shared Weights
15
+
16
+ This model was intorduced in [this paper](https://arxiv.org/pdf/1907.12461.pdf).
17
+
18
+ ## Model description
19
+
20
+ The training data is private English-Bulgarian parallel data.
21
+
22
+ ## Intended uses & limitations
23
+
24
+ You can use the raw model for translation from English to Bulgarian.
25
+
26
+ ### How to use
27
+
28
+ Here is how to use this model in PyTorch:
29
+
30
+ ```python
31
+ >>> from transformers import EncoderDecoderModel, XLMRobertaTokenizer
32
+ >>>
33
+ >>> model_id = "rmihaylov/roberta2roberta-shared-nmt-bg"
34
+ >>> model = EncoderDecoderModel.from_pretrained(model_id)
35
+ >>> model.encoder.pooler = None
36
+ >>> tokenizer = XLMRobertaTokenizer.from_pretrained(model_id)
37
+ >>>
38
+ >>> text = """
39
+ Others were photographed ransacking the building, smiling while posing with congressional items such as House Speaker Nancy Pelosi's lectern or at her staffer's desk, or publicly bragged about the crowd's violent and destructive joyride.
40
+ """
41
+ >>>
42
+ >>> inputs = tokenizer.encode_plus(text, max_length=100, return_tensors='pt', truncation=True)
43
+ >>>
44
+ >>> translation = model.generate(**inputs,
45
+ >>> max_length=100,
46
+ >>> num_beams=4,
47
+ >>> do_sample=True,
48
+ >>> num_return_sequences=1,
49
+ >>> top_p=0.95,
50
+ >>> decoder_start_token_id=tokenizer.bos_token_id)
51
+
52
+ >>> print([tokenizer.decode(g.tolist(), skip_special_tokens=True) for g in translation])
53
+
54
+ ['Други бяха заснети да бягат из сградата, усмихвайки се, докато се представят с конгресни предмети, като например лекцията на председателя на парламента Нанси Пелози или на бюрото на нейния служител, или публично се хвалят за насилието и разрушителната радост на тълпата.']
55
+ ```