salamandra-2b / perplexity_IQ3_S.txt
robbiemu's picture
update for quantization
5dadba4
build: 3906 (7eee341b) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
llama_model_loader: loaded meta data with 33 key-value pairs and 219 tensors from salamandra-2b_IQ3_S.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.size_label str = 2.3B
llama_model_loader: - kv 3: general.license str = apache-2.0
llama_model_loader: - kv 4: general.tags arr[str,1] = ["text-generation"]
llama_model_loader: - kv 5: general.languages arr[str,36] = ["bg", "ca", "code", "cs", "cy", "da"...
llama_model_loader: - kv 6: llama.block_count u32 = 24
llama_model_loader: - kv 7: llama.context_length u32 = 8192
llama_model_loader: - kv 8: llama.embedding_length u32 = 2048
llama_model_loader: - kv 9: llama.feed_forward_length u32 = 5440
llama_model_loader: - kv 10: llama.attention.head_count u32 = 16
llama_model_loader: - kv 11: llama.attention.head_count_kv u32 = 16
llama_model_loader: - kv 12: llama.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 13: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 14: general.file_type u32 = 26
llama_model_loader: - kv 15: llama.vocab_size u32 = 256000
llama_model_loader: - kv 16: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 17: tokenizer.ggml.add_space_prefix bool = true
llama_model_loader: - kv 18: tokenizer.ggml.model str = llama
llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,256000] = ["<unk>", "<s>", "</s>", "<pad>", "<|...
llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 23: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 25: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 26: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 27: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 28: general.quantization_version u32 = 2
llama_model_loader: - kv 29: quantize.imatrix.file str = imatrix/oscar/imatrix.dat
llama_model_loader: - kv 30: quantize.imatrix.dataset str = ./imatrix/oscar/imatrix-dataset.txt
llama_model_loader: - kv 31: quantize.imatrix.entries_count i32 = 168
llama_model_loader: - kv 32: quantize.imatrix.chunks_count i32 = 44176
llama_model_loader: - type f32: 49 tensors
llama_model_loader: - type iq4_nl: 24 tensors
llama_model_loader: - type iq3_s: 145 tensors
llama_model_loader: - type bf16: 1 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 104
llm_load_vocab: token to piece cache size = 1.8842 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 256000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 2048
llm_load_print_meta: n_layer = 24
llm_load_print_meta: n_head = 16
llm_load_print_meta: n_head_kv = 16
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2048
llm_load_print_meta: n_embd_v_gqa = 2048
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 5440
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = IQ3_S - 3.4375 bpw
llm_load_print_meta: model params = 2.25 B
llm_load_print_meta: model size = 1.70 GiB (6.49 BPW)
llm_load_print_meta: general.name = n/a
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 145 '<0x0A>'
llm_load_print_meta: EOT token = 5 '<|im_end|>'
llm_load_print_meta: EOG token = 2 '</s>'
llm_load_print_meta: EOG token = 5 '<|im_end|>'
llm_load_print_meta: max token length = 72
llm_load_tensors: ggml ctx size = 0.20 MiB
llm_load_tensors: offloading 24 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 25/25 layers to GPU
llm_load_tensors: Metal buffer size = 1742.81 MiB
llm_load_tensors: CPU buffer size = 214.84 MiB
................................
llama_new_context_with_model: n_ctx = 8192
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 128
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M3 Max
ggml_metal_init: picking default device: Apple M3 Max
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name: Apple M3 Max
ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction support = true
ggml_metal_init: simdgroup matrix mul. support = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 42949.67 MB
llama_kv_cache_init: Metal KV buffer size = 1536.00 MiB
llama_new_context_with_model: KV self size = 1536.00 MiB, K (f16): 768.00 MiB, V (f16): 768.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.98 MiB
llama_new_context_with_model: Metal compute buffer size = 72.00 MiB
llama_new_context_with_model: CPU compute buffer size = 125.00 MiB
llama_new_context_with_model: graph nodes = 774
llama_new_context_with_model: graph splits = 3
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
system_info: n_threads = 15 (n_threads_batch = 15) / 16 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 1 | LLAMAFILE = 1 |
perplexity: tokenizing the input ..
perplexity: tokenization took 3340.89 ms
perplexity: calculating perplexity over 134 chunks, n_ctx=8192, batch_size=512, n_seq=1
perplexity: 12.62 seconds per pass - ETA 28.17 minutes
[1]17.6206,[2]17.7570,[3]16.0830,[4]15.7860,[5]15.0416,[6]14.5760,[7]15.4311,[8]14.9125,[9]14.6348,[10]13.9627,[11]14.6423,[12]14.7445,[13]15.7943,[14]16.0621,[15]16.0744,[16]16.6146,[17]16.9128,[18]16.8410,[19]16.8866,[20]17.2135,[21]17.2276,[22]15.3283,[23]15.5026,[24]15.1055,[25]14.5916,[26]14.1609,[27]13.9734,[28]13.7918,[29]13.7414,[30]13.5330,[31]13.7642,[32]13.8610,[33]14.3190,[34]14.6262,[35]14.9235,[36]14.6893,[37]14.6727,[38]14.7384,[39]14.5787,[40]14.5976,[41]14.5782,[42]14.3886,[43]14.3306,[44]14.4946,[45]14.6930,[46]14.5394,[47]14.7941,[48]14.9313,[49]15.2288,[50]15.4866,[51]15.5280,[52]15.7483,[53]16.0688,[54]16.3857,[55]16.5096,[56]16.3388,[57]16.2487,[58]15.9785,[59]15.8635,[60]15.6677,[61]15.7072,[62]15.8467,[63]16.0367,[64]16.0874,[65]16.1105,[66]16.2943,[67]16.2754,[68]16.1737,[69]16.0371,[70]15.9373,[71]15.9379,[72]15.8867,[73]15.8980,[74]15.8422,[75]15.8175,[76]15.7582,[77]15.8132,[78]15.8065,[79]15.8128,[80]15.8442,[81]15.5659,[82]15.5500,[83]15.4236,[84]15.4664,[85]15.5190,[86]15.7188,[87]15.7525,[88]15.9092,[89]15.9675,[90]16.0914,[91]16.1504,[92]15.9873,[93]16.0529,[94]16.0362,[95]16.1747,[96]16.3677,[97]16.4428,[98]16.5416,[99]16.6613,[100]16.7050,[101]16.7340,[102]16.7021,[103]16.6684,[104]16.6516,[105]16.6289,[106]16.4966,[107]16.3654,[108]16.4299,[109]16.4557,[110]16.3651,[111]16.3308,[112]16.1804,[113]16.0407,[114]16.0320,[115]16.0016,[116]16.0081,[117]15.9009,[118]15.7692,[119]15.7684,[120]15.8304,[121]15.8482,[122]15.8734,[123]15.9149,[124]15.9353,[125]15.9342,[126]15.9587,[127]15.9901,[128]16.0695,[129]16.0615,[130]16.0389,[131]16.0942,[132]16.0693,[133]16.0145,[134]15.8627,
Final estimate: PPL = 15.8627 +/- 0.06338
llama_perf_context_print: load time = 1165.51 ms
llama_perf_context_print: prompt eval time = 1518444.72 ms / 1097728 tokens ( 1.38 ms per token, 722.93 tokens per second)
llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_perf_context_print: total time = 1575137.87 ms / 1097729 tokens
ggml_metal_free: deallocating