Update to model with WER 12.22%
Browse files- README.md +60 -73
- config.json +4 -4
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- uk
|
4 |
-
license:
|
5 |
tags:
|
6 |
- automatic-speech-recognition
|
7 |
- common_voice
|
@@ -21,20 +21,20 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
-
value:
|
25 |
---
|
26 |
|
|
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
should probably proofread and complete it, then remove this comment. -->
|
29 |
|
30 |
# wav2vec2-xls-r-300m-uk
|
31 |
|
32 |
-
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the
|
33 |
-
Notebook for training is located in this repository: [https://github.com/robinhad/wav2vec2-xls-r-ukrainian](https://github.com/robinhad/wav2vec2-xls-r-ukrainian).
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Wer: 0.
|
37 |
-
- Cer: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,80 +53,67 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
-
- train_batch_size:
|
58 |
-
- eval_batch_size:
|
59 |
- seed: 42
|
60 |
-
- gradient_accumulation_steps:
|
61 |
-
- total_train_batch_size:
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
-
- lr_scheduler_warmup_steps:
|
65 |
-
- num_epochs:
|
66 |
- mixed_precision_training: Native AMP
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
-
| Training Loss | Epoch
|
71 |
-
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.0072 | 381.39 | 16400 | 0.0656 | 0.4030 | 0.3028 |
|
113 |
-
| 0.0073 | 390.69 | 16800 | 0.0677 | 0.4032 | 0.3081 |
|
114 |
-
| 0.0069 | 399.99 | 17200 | 0.0669 | 0.4130 | 0.3021 |
|
115 |
-
| 0.0063 | 409.3 | 17600 | 0.0651 | 0.4072 | 0.2979 |
|
116 |
-
| 0.0059 | 418.6 | 18000 | 0.0640 | 0.4110 | 0.2969 |
|
117 |
-
| 0.0056 | 427.9 | 18400 | 0.0647 | 0.4229 | 0.2995 |
|
118 |
-
| 0.005 | 437.21 | 18800 | 0.0624 | 0.4118 | 0.2885 |
|
119 |
-
| 0.0046 | 446.51 | 19200 | 0.0615 | 0.4111 | 0.2841 |
|
120 |
-
| 0.0043 | 455.8 | 19600 | 0.0616 | 0.4071 | 0.2850 |
|
121 |
-
| 0.0038 | 465.11 | 20000 | 0.0624 | 0.4268 | 0.2867 |
|
122 |
-
| 0.0035 | 474.41 | 20400 | 0.0605 | 0.4117 | 0.2820 |
|
123 |
-
| 0.0035 | 483.71 | 20800 | 0.0602 | 0.4155 | 0.2819 |
|
124 |
-
| 0.0034 | 493.02 | 21200 | 0.0601 | 0.4165 | 0.2799 |
|
125 |
|
126 |
|
127 |
### Framework versions
|
128 |
|
129 |
-
- Transformers 4.
|
130 |
-
- Pytorch 1.
|
131 |
-
- Datasets
|
132 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
language:
|
3 |
- uk
|
4 |
+
license: mit
|
5 |
tags:
|
6 |
- automatic-speech-recognition
|
7 |
- common_voice
|
|
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
+
value: 12.22
|
25 |
---
|
26 |
|
27 |
+
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
should probably proofread and complete it, then remove this comment. -->
|
30 |
|
31 |
# wav2vec2-xls-r-300m-uk
|
32 |
|
33 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
|
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.0927
|
36 |
+
- Wer: 0.1222
|
37 |
+
- Cer: 0.0204
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 3e-05
|
57 |
+
- train_batch_size: 40
|
58 |
+
- eval_batch_size: 40
|
59 |
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 6
|
61 |
+
- total_train_batch_size: 240
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_steps: 100
|
65 |
+
- num_epochs: 100
|
66 |
- mixed_precision_training: Native AMP
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
+
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|
71 |
+
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:|
|
72 |
+
| 9.0008 | 1.68 | 200 | 1.0 | 3.7590 | 1.0 |
|
73 |
+
| 3.4972 | 3.36 | 400 | 1.0 | 3.3933 | 1.0 |
|
74 |
+
| 3.3432 | 5.04 | 600 | 1.0 | 3.2617 | 1.0 |
|
75 |
+
| 3.2421 | 6.72 | 800 | 1.0 | 3.0712 | 1.0 |
|
76 |
+
| 1.9839 | 7.68 | 1000 | 0.1400 | 0.7204 | 0.6561 |
|
77 |
+
| 0.8017 | 9.36 | 1200 | 0.0766 | 0.3734 | 0.4159 |
|
78 |
+
| 0.5554 | 11.04 | 1400 | 0.0583 | 0.2621 | 0.3237 |
|
79 |
+
| 0.4309 | 12.68 | 1600 | 0.0486 | 0.2085 | 0.2753 |
|
80 |
+
| 0.3697 | 14.36 | 1800 | 0.0421 | 0.1746 | 0.2427 |
|
81 |
+
| 0.3293 | 16.04 | 2000 | 0.0388 | 0.1597 | 0.2243 |
|
82 |
+
| 0.2934 | 17.72 | 2200 | 0.0358 | 0.1428 | 0.2083 |
|
83 |
+
| 0.2704 | 19.4 | 2400 | 0.0333 | 0.1326 | 0.1949 |
|
84 |
+
| 0.2547 | 21.08 | 2600 | 0.0322 | 0.1255 | 0.1882 |
|
85 |
+
| 0.2366 | 22.76 | 2800 | 0.0309 | 0.1211 | 0.1815 |
|
86 |
+
| 0.2183 | 24.44 | 3000 | 0.0294 | 0.1159 | 0.1727 |
|
87 |
+
| 0.2115 | 26.13 | 3200 | 0.0280 | 0.1117 | 0.1661 |
|
88 |
+
| 0.1968 | 27.8 | 3400 | 0.0274 | 0.1063 | 0.1622 |
|
89 |
+
| 0.1922 | 29.48 | 3600 | 0.0269 | 0.1082 | 0.1598 |
|
90 |
+
| 0.1847 | 31.17 | 3800 | 0.0260 | 0.1061 | 0.1550 |
|
91 |
+
| 0.1715 | 32.84 | 4000 | 0.0252 | 0.1014 | 0.1496 |
|
92 |
+
| 0.1689 | 34.53 | 4200 | 0.0250 | 0.1012 | 0.1492 |
|
93 |
+
| 0.1655 | 36.21 | 4400 | 0.0243 | 0.0999 | 0.1450 |
|
94 |
+
| 0.1585 | 37.88 | 4600 | 0.0239 | 0.0967 | 0.1432 |
|
95 |
+
| 0.1492 | 39.57 | 4800 | 0.0237 | 0.0978 | 0.1421 |
|
96 |
+
| 0.1491 | 41.25 | 5000 | 0.0236 | 0.0963 | 0.1412 |
|
97 |
+
| 0.1453 | 42.93 | 5200 | 0.0230 | 0.0979 | 0.1373 |
|
98 |
+
| 0.1386 | 44.61 | 5400 | 0.0227 | 0.0959 | 0.1353 |
|
99 |
+
| 0.1387 | 46.29 | 5600 | 0.0226 | 0.0927 | 0.1355 |
|
100 |
+
| 0.1329 | 47.97 | 5800 | 0.0224 | 0.0951 | 0.1341 |
|
101 |
+
| 0.1295 | 49.65 | 6000 | 0.0219 | 0.0950 | 0.1306 |
|
102 |
+
| 0.1287 | 51.33 | 6200 | 0.0216 | 0.0937 | 0.1290 |
|
103 |
+
| 0.1277 | 53.02 | 6400 | 0.0215 | 0.0963 | 0.1294 |
|
104 |
+
| 0.1201 | 54.69 | 6600 | 0.0213 | 0.0959 | 0.1282 |
|
105 |
+
| 0.1199 | 56.38 | 6800 | 0.0215 | 0.0944 | 0.1286 |
|
106 |
+
| 0.1221 | 58.06 | 7000 | 0.0209 | 0.0938 | 0.1249 |
|
107 |
+
| 0.1145 | 59.68 | 7200 | 0.0208 | 0.0941 | 0.1254 |
|
108 |
+
| 0.1143 | 61.36 | 7400 | 0.0209 | 0.0941 | 0.1249 |
|
109 |
+
| 0.1143 | 63.04 | 7600 | 0.0209 | 0.0940 | 0.1248 |
|
110 |
+
| 0.1137 | 64.72 | 7800 | 0.0205 | 0.0931 | 0.1234 |
|
111 |
+
| 0.1125 | 66.4 | 8000 | 0.0204 | 0.0927 | 0.1222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
|
114 |
### Framework versions
|
115 |
|
116 |
+
- Transformers 4.25.1
|
117 |
+
- Pytorch 1.13.1+cu117
|
118 |
+
- Datasets 2.8.0
|
119 |
+
- Tokenizers 0.13.2
|
config.json
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
"architectures": [
|
9 |
"Wav2Vec2ForCTC"
|
10 |
],
|
11 |
-
"attention_dropout": 0.
|
12 |
"bos_token_id": 1,
|
13 |
"classifier_proj_size": 256,
|
14 |
"codevector_dim": 768,
|
@@ -49,17 +49,17 @@
|
|
49 |
"feat_extract_activation": "gelu",
|
50 |
"feat_extract_dropout": 0.0,
|
51 |
"feat_extract_norm": "layer",
|
52 |
-
"feat_proj_dropout": 0.
|
53 |
"feat_quantizer_dropout": 0.0,
|
54 |
"final_dropout": 0.0,
|
55 |
"gradient_checkpointing": false,
|
56 |
"hidden_act": "gelu",
|
57 |
-
"hidden_dropout": 0.
|
58 |
"hidden_size": 1024,
|
59 |
"initializer_range": 0.02,
|
60 |
"intermediate_size": 4096,
|
61 |
"layer_norm_eps": 1e-05,
|
62 |
-
"layerdrop": 0.
|
63 |
"mask_feature_length": 10,
|
64 |
"mask_feature_min_masks": 0,
|
65 |
"mask_feature_prob": 0.0,
|
|
|
8 |
"architectures": [
|
9 |
"Wav2Vec2ForCTC"
|
10 |
],
|
11 |
+
"attention_dropout": 0.07,
|
12 |
"bos_token_id": 1,
|
13 |
"classifier_proj_size": 256,
|
14 |
"codevector_dim": 768,
|
|
|
49 |
"feat_extract_activation": "gelu",
|
50 |
"feat_extract_dropout": 0.0,
|
51 |
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.07,
|
53 |
"feat_quantizer_dropout": 0.0,
|
54 |
"final_dropout": 0.0,
|
55 |
"gradient_checkpointing": false,
|
56 |
"hidden_act": "gelu",
|
57 |
+
"hidden_dropout": 0.07,
|
58 |
"hidden_size": 1024,
|
59 |
"initializer_range": 0.02,
|
60 |
"intermediate_size": 4096,
|
61 |
"layer_norm_eps": 1e-05,
|
62 |
+
"layerdrop": 0.07,
|
63 |
"mask_feature_length": 10,
|
64 |
"mask_feature_min_masks": 0,
|
65 |
"mask_feature_prob": 0.0,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262061741
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f565503cfd119e307ecea9fa2436a1547d0225d76817ff5567653c89aa17786a
|
3 |
size 1262061741
|