File size: 1,708 Bytes
2c1ff8d
 
 
 
 
 
 
 
 
 
3583d58
 
 
2c1ff8d
 
 
 
90b09af
2c1ff8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b09af
2c1ff8d
 
 
 
 
90b09af
 
 
 
 
2c1ff8d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: peft
tags:
- generated_from_trainer
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
model-index:
- name: Mistral-Instruct-7B-v0.2-ChatAlpacaV2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral-Instruct-7B-v0.2-ChatAlpacaV2

This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8439

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8801        | 0.2   | 120  | 0.8756          |
| 0.8498        | 0.39  | 240  | 0.8553          |
| 0.8515        | 0.59  | 360  | 0.8475          |
| 0.8313        | 0.78  | 480  | 0.8445          |
| 0.857         | 0.98  | 600  | 0.8439          |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.1
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1