robotics-diffusion-transformer commited on
Commit
ce02915
1 Parent(s): 1ba6588

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -5
README.md CHANGED
@@ -1,9 +1,108 @@
1
  ---
 
 
 
 
 
2
  tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
 
 
 
 
 
5
  ---
 
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: https://huggingface.co/robotics-diffusion-transformer/rdt-1b
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: robotics
6
+ library_name: transformers
7
  tags:
8
+ - robotics
9
+ - pytorch
10
+ - multimodal
11
+ - pretraining
12
+ - vla
13
+ - diffusion
14
+ - rdt
15
  ---
16
+ # RDT-170M
17
 
18
+ ![](head.mp4)
19
+ RDT-170M is a 170M-parameter imitation learning Diffusion Transformer ***(RDT(small) in ablation)***. Given language instruction and RGB images of up to three views, RDT can predict the next
20
+ 64 robot actions. RDT is compatible with almost all modern mobile manipulators, from single-arm to dual-arm, joint to EEF, position to velocity, and even wheeled locomotion.
21
+
22
+ All the [code](https://github.com/thu-ml/RoboticsDiffusionTransformer/tree/main?tab=readme-ov-file), pre-trained model weights, and [data](https://huggingface.co/datasets/robotics-diffusion-transformer/rdt-ft-data) are licensed under the MIT license.
23
+
24
+ Please refer to our [project page](https://rdt-robotics.github.io/rdt-robotics/) and [paper](https://arxiv.org/pdf/2410.07864) for more information.
25
+
26
+ ## Model Details
27
+
28
+ - **Developed by:** The RDT team consisting of researchers from the [TSAIL group](https://ml.cs.tsinghua.edu.cn/) at Tsinghua University
29
+ - **Task Type:** Vision-Language-Action (language, image => robot actions)
30
+ - **Modle Type:** Diffusion Policy with Transformers
31
+ - **License:** MIT
32
+ - **Language(s) (NLP):** en
33
+ - **Multi-Modal Encoders:**
34
+ - **Vision Backbone:** [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384)
35
+ - **Language Model:** [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl)
36
+ - **Pre-Training Datasets:** 46 datasets consisting of [RT-1 Dataset](https://robotics-transformer1.github.io/), [RH20T](https://rh20t.github.io/), [DROID](https://droid-dataset.github.io/), [BridgeData V2](https://rail-berkeley.github.io/bridgedata/), [RoboSet](https://robopen.github.io/roboset/), and a subset of [Open X-Embodiment](https://robotics-transformer-x.github.io/). See [this link](https://github.com/thu-ml/RoboticsDiffusionTransformer/blob/main/docs/pretrain.md#download-and-prepare-datasets) for a detailed list.
37
+ - **Repository:** https://github.com/thu-ml/RoboticsDiffusionTransformer
38
+ - **Paper :** https://arxiv.org/pdf/2410.07864
39
+ - **Project Page:** https://rdt-robotics.github.io/rdt-robotics/
40
+
41
+ ## Uses
42
+
43
+ RDT takes language instruction, RGB images (of up to three views), control frequency (if any), and proprioception as input and predicts the next 64 robot actions.
44
+ RDT supports control of almost all robot manipulators with the help of the unified action space, which
45
+ includes all the main physical quantities of the robot manipulator (e.g., the end-effector and joint, position and velocity, and the wheeled locomotion).
46
+ To deploy on your robot platform, you need to fill the relevant quantities of the raw action vector into the unified space vector. See [our repository](https://github.com/thu-ml/RoboticsDiffusionTransformer) for more information.
47
+
48
+ **Out-of-Scope**: Due to the embodiment gap, RDT cannot yet generalize to new robot platforms (not seen in the pre-training datasets).
49
+ In this case, we recommend collecting a small dataset of the target robot and then using it to fine-tune RDT.
50
+ See [our repository](https://github.com/thu-ml/RoboticsDiffusionTransformer) for a tutorial.
51
+
52
+ Here's an example of how to use the RDT-1B model for inference on a robot:
53
+ ```python
54
+ # Please first clone the repository and install dependencies
55
+ # Then switch to the root directory of the repository by "cd RoboticsDiffusionTransformer"
56
+
57
+ # Import a create function from the code base
58
+ from scripts.agilex_model import create_model
59
+
60
+ # Names of cameras used for visual input
61
+ CAMERA_NAMES = ['cam_high', 'cam_right_wrist', 'cam_left_wrist']
62
+ config = {
63
+ 'episode_len': 1000, # Max length of one episode
64
+ 'state_dim': 14, # Dimension of the robot's state
65
+ 'chunk_size': 64, # Number of actions to predict in one step
66
+ 'camera_names': CAMERA_NAMES,
67
+ }
68
+ pretrained_vision_encoder_name_or_path = "google/siglip-so400m-patch14-384"
69
+ # Create the model with the specified configuration
70
+ model = create_model(
71
+ args=config,
72
+ dtype=torch.bfloat16,
73
+ pretrained_vision_encoder_name_or_path=pretrained_vision_encoder_name_or_path,
74
+ pretrained='robotics-diffusion-transformer/rdt-1b',
75
+ control_frequency=25,
76
+ )
77
+
78
+ # Start inference process
79
+ # Load the pre-computed language embeddings
80
+ # Refer to scripts/encode_lang.py for how to encode the language instruction
81
+ lang_embeddings_path = 'your/language/embedding/path'
82
+ text_embedding = torch.load(lang_embeddings_path)['embeddings']
83
+ images: List(PIL.Image) = ... # The images from last 2 frames
84
+ proprio = ... # The current robot state
85
+ # Perform inference to predict the next `chunk_size` actions
86
+ actions = policy.step(
87
+ proprio=proprio,
88
+ images=images,
89
+ text_embeds=text_embedding
90
+ )
91
+ ```
92
+
93
+ <!-- RDT-1B supports finetuning on custom datasets, deploying and inferencing on real robots, and retraining the model.
94
+ Please refer to [our repository](https://github.com/GeneralEmbodiedSystem/RoboticsDiffusionTransformer/blob/main/docs/pretrain.md) for all the above guides. -->
95
+
96
+
97
+ ## Citation
98
+
99
+ If you find our work helpful, please cite us:
100
+ ```bibtex
101
+ @article{liu2024rdt,
102
+ title={RDT-1B: a Diffusion Foundation Model for Bimanual Manipulation},
103
+ author={Liu, Songming and Wu, Lingxuan and Li, Bangguo and Tan, Hengkai and Chen, Huayu and Wang, Zhengyi and Xu, Ke and Su, Hang and Zhu, Jun},
104
+ journal={arXiv preprint arXiv:2410.07864},
105
+ year={2024}
106
+ }
107
+ ```
108
+ Thank you!