Commit
f4fb9ee
1 Parent(s): a17bf07

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -1
README.md CHANGED
@@ -32,7 +32,35 @@ The pre-trained RDT model can be fine-tuned for specific robotic embodiment and
32
  Here's an example of how to use the RDT-1B model for inference on a Mobile-ALOHA robot:
33
 
34
  ```python
35
- # Clone the repo and install depencies
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ```
37
 
38
  RDT-1B supports finetuning on custom dataset, deploying and inferencing on real-robots, as well as pretraining the model.
 
32
  Here's an example of how to use the RDT-1B model for inference on a Mobile-ALOHA robot:
33
 
34
  ```python
35
+ # Clone the repository and install dependencies
36
+ from scripts.agilex_model import create_model
37
+ CAMERA_NAMES = ['cam_high', 'cam_right_wrist', 'cam_left_wrist'] # Names of cameras used for visual input
38
+ config = {
39
+ 'episode_len': 1000, # Length of one episode
40
+ 'state_dim': 14, # Dimension of the robot's state
41
+ 'chunk_size': 64, # Number of actions to predict in one step
42
+ 'camera_names': CAMERA_NAMES,
43
+ }
44
+ ctrl_freq=25 # Set the control frequency (Hz)
45
+ pretrained_vision_encoder_name_or_path = "google/siglip-so400m-patch14-384" # The pre-trained vision encoder model
46
+ # Create the model with specified configuration
47
+ model = create_model(
48
+ args=config,
49
+ dtype=torch.bfloat16, # Use bfloat16 for improved performance
50
+ pretrained_vision_encoder_name_or_path=pretrained_vision_encoder_name_or_path,
51
+ control_frequency=ctrl_freq,
52
+ )
53
+ # Start inference process
54
+ lang_embeddings_path = 'your/language/embedding/path'
55
+ text_embedding = torch.load(lang_embeddings_path)['embeddings'] # Load pre-computed language embeddings
56
+ images: List(PIL.Image) = ... # The images from last 2 frame
57
+ proprio = ... # The current robot state
58
+ # Perform inference to predict the next chunk_size actions
59
+ actions = policy.step(
60
+ proprio=proprio,
61
+ images=images,
62
+ text_embeds=lang_embeddings
63
+ )
64
  ```
65
 
66
  RDT-1B supports finetuning on custom dataset, deploying and inferencing on real-robots, as well as pretraining the model.