--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-0.0003-bs-2-maxep-10 results: [] --- # bart-abs-1509-0313-lr-0.0003-bs-2-maxep-10 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 7.6999 - Rouge/rouge1: 0.2439 - Rouge/rouge2: 0.0504 - Rouge/rougel: 0.2065 - Rouge/rougelsum: 0.2067 - Bertscore/bertscore-precision: 0.8544 - Bertscore/bertscore-recall: 0.8581 - Bertscore/bertscore-f1: 0.8562 - Meteor: 0.229 - Gen Len: 44.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 2.1693 | 1.0 | 434 | 4.5206 | 0.2693 | 0.0703 | 0.2315 | 0.232 | 0.8864 | 0.8585 | 0.8722 | 0.2188 | 29.0 | | 1.3403 | 2.0 | 868 | 5.0395 | 0.3061 | 0.0778 | 0.251 | 0.2513 | 0.8875 | 0.864 | 0.8755 | 0.239 | 32.0 | | 1.1783 | 3.0 | 1302 | 5.1339 | 0.2426 | 0.0523 | 0.1835 | 0.1835 | 0.8501 | 0.8566 | 0.8533 | 0.248 | 52.0 | | 0.8203 | 4.0 | 1736 | 5.6678 | 0.3347 | 0.0996 | 0.2675 | 0.2678 | 0.8793 | 0.8662 | 0.8727 | 0.2663 | 27.0 | | 0.623 | 5.0 | 2170 | 6.1732 | 0.2961 | 0.0668 | 0.2313 | 0.2314 | 0.8628 | 0.8608 | 0.8617 | 0.2421 | 52.0 | | 0.5051 | 6.0 | 2604 | 6.1011 | 0.2953 | 0.0542 | 0.2213 | 0.2211 | 0.8685 | 0.8588 | 0.8636 | 0.2403 | 34.0 | | 0.4004 | 7.0 | 3038 | 6.8848 | 0.2613 | 0.0803 | 0.214 | 0.2142 | 0.8711 | 0.8469 | 0.8588 | 0.2102 | 26.0 | | 0.3371 | 8.0 | 3472 | 7.2987 | 0.2132 | 0.0353 | 0.1717 | 0.1717 | 0.8605 | 0.8522 | 0.8563 | 0.1839 | 27.0 | | 0.2954 | 9.0 | 3906 | 7.4692 | 0.244 | 0.063 | 0.1986 | 0.1986 | 0.8544 | 0.8608 | 0.8575 | 0.211 | 52.0 | | 0.2576 | 10.0 | 4340 | 7.6999 | 0.2439 | 0.0504 | 0.2065 | 0.2067 | 0.8544 | 0.8581 | 0.8562 | 0.229 | 44.0 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1