--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-0.0003-bs-4-maxep-6 results: [] --- # bart-abs-1509-0313-lr-0.0003-bs-4-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8541 - Rouge/rouge1: 0.4315 - Rouge/rouge2: 0.1861 - Rouge/rougel: 0.3638 - Rouge/rougelsum: 0.3654 - Bertscore/bertscore-precision: 0.8936 - Bertscore/bertscore-recall: 0.8875 - Bertscore/bertscore-f1: 0.8904 - Meteor: 0.3814 - Gen Len: 35.4273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 2.1071 | 1.0 | 217 | 2.5496 | 0.4238 | 0.1753 | 0.3521 | 0.3541 | 0.8943 | 0.8836 | 0.8888 | 0.3359 | 32.1 | | 1.5392 | 2.0 | 434 | 2.5867 | 0.4296 | 0.1807 | 0.3556 | 0.3551 | 0.8921 | 0.886 | 0.8889 | 0.3598 | 35.0909 | | 1.0328 | 3.0 | 651 | 2.6952 | 0.4096 | 0.1667 | 0.3444 | 0.3453 | 0.8919 | 0.8826 | 0.8871 | 0.3519 | 33.8818 | | 0.62 | 4.0 | 868 | 2.9126 | 0.4104 | 0.16 | 0.3478 | 0.3487 | 0.8904 | 0.8815 | 0.8858 | 0.3524 | 33.4273 | | 0.3251 | 5.0 | 1085 | 3.3250 | 0.43 | 0.1771 | 0.3591 | 0.3598 | 0.8935 | 0.8861 | 0.8896 | 0.3744 | 34.9636 | | 0.1503 | 6.0 | 1302 | 3.8541 | 0.4315 | 0.1861 | 0.3638 | 0.3654 | 0.8936 | 0.8875 | 0.8904 | 0.3814 | 35.4273 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1