--- license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-1509-0313-lr-3e-05-bs-8-maxep-6 results: [] --- # bart-abs-1509-0313-lr-3e-05-bs-8-maxep-6 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3957 - Rouge/rouge1: 0.4646 - Rouge/rouge2: 0.2089 - Rouge/rougel: 0.3939 - Rouge/rougelsum: 0.3945 - Bertscore/bertscore-precision: 0.8956 - Bertscore/bertscore-recall: 0.8935 - Bertscore/bertscore-f1: 0.8944 - Meteor: 0.4132 - Gen Len: 37.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 0.6107 | 1.0 | 109 | 2.4784 | 0.449 | 0.1974 | 0.3774 | 0.3776 | 0.8943 | 0.8904 | 0.8922 | 0.3981 | 36.9182 | | 0.3993 | 2.0 | 218 | 2.7984 | 0.4656 | 0.2145 | 0.3954 | 0.3965 | 0.8975 | 0.8914 | 0.8943 | 0.408 | 35.1364 | | 0.2779 | 3.0 | 327 | 3.0563 | 0.4669 | 0.2112 | 0.3981 | 0.3995 | 0.8961 | 0.8905 | 0.8931 | 0.4088 | 36.0545 | | 0.2038 | 4.0 | 436 | 3.2410 | 0.4639 | 0.2052 | 0.3895 | 0.3904 | 0.896 | 0.8949 | 0.8953 | 0.4109 | 37.9 | | 0.1606 | 5.0 | 545 | 3.3263 | 0.4582 | 0.2063 | 0.391 | 0.392 | 0.8961 | 0.893 | 0.8944 | 0.4033 | 36.5545 | | 0.1282 | 6.0 | 654 | 3.3957 | 0.4646 | 0.2089 | 0.3939 | 0.3945 | 0.8956 | 0.8935 | 0.8944 | 0.4132 | 37.5 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1