--- library_name: transformers license: apache-2.0 base_model: sshleifer/distilbart-xsum-12-6 tags: - generated_from_trainer model-index: - name: bart-abs-2409-1947-lr-3e-05-bs-2-maxep-10 results: [] --- # bart-abs-2409-1947-lr-3e-05-bs-2-maxep-10 This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6542 - Rouge/rouge1: 0.4733 - Rouge/rouge2: 0.2228 - Rouge/rougel: 0.409 - Rouge/rougelsum: 0.4103 - Bertscore/bertscore-precision: 0.8957 - Bertscore/bertscore-recall: 0.8945 - Bertscore/bertscore-f1: 0.8949 - Meteor: 0.4257 - Gen Len: 38.0727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:| | 2.3299 | 1.0 | 434 | 2.1997 | 0.4484 | 0.2127 | 0.3842 | 0.3856 | 0.8939 | 0.8904 | 0.892 | 0.4107 | 38.4273 | | 1.6174 | 2.0 | 868 | 2.0581 | 0.4617 | 0.2158 | 0.3919 | 0.393 | 0.8972 | 0.8907 | 0.8938 | 0.4049 | 36.0545 | | 1.1854 | 3.0 | 1302 | 2.1888 | 0.4631 | 0.2153 | 0.3893 | 0.3914 | 0.9 | 0.891 | 0.8953 | 0.4044 | 35.8273 | | 0.8568 | 4.0 | 1736 | 2.3776 | 0.4518 | 0.201 | 0.3822 | 0.3839 | 0.8973 | 0.8895 | 0.8932 | 0.3907 | 34.7636 | | 0.6056 | 5.0 | 2170 | 2.6468 | 0.4731 | 0.2207 | 0.4031 | 0.4036 | 0.8974 | 0.8946 | 0.8959 | 0.4173 | 37.5818 | | 0.4235 | 6.0 | 2604 | 2.9226 | 0.4816 | 0.2258 | 0.4055 | 0.4064 | 0.8989 | 0.8955 | 0.897 | 0.4317 | 36.8909 | | 0.2995 | 7.0 | 3038 | 3.1938 | 0.4541 | 0.1989 | 0.3839 | 0.3843 | 0.8941 | 0.8916 | 0.8927 | 0.4071 | 37.0091 | | 0.2079 | 8.0 | 3472 | 3.4178 | 0.4684 | 0.2094 | 0.3926 | 0.3931 | 0.8941 | 0.8942 | 0.894 | 0.4177 | 39.4545 | | 0.1527 | 9.0 | 3906 | 3.5347 | 0.4716 | 0.2151 | 0.3989 | 0.4009 | 0.8937 | 0.8942 | 0.8938 | 0.4277 | 39.5909 | | 0.1203 | 10.0 | 4340 | 3.6542 | 0.4733 | 0.2228 | 0.409 | 0.4103 | 0.8957 | 0.8945 | 0.8949 | 0.4257 | 38.0727 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1