File size: 3,208 Bytes
e674497 aa2cb5c e674497 aa2cb5c e674497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
- generated_from_trainer
model-index:
- name: trained-distilbart-abs-0807
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trained-distilbart-abs-0807
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4184
- Rouge/rouge1: 0.0185
- Rouge/rouge2: 0.0088
- Rouge/rougel: 0.0152
- Rouge/rougelsum: 0.016
- Bertscore/bertscore-precision: 0.0404
- Bertscore/bertscore-recall: 0.04
- Bertscore/bertscore-f1: 0.0402
- Meteor: 0.0163
- Gen Len: 80.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge/rouge1 | Rouge/rouge2 | Rouge/rougel | Rouge/rougelsum | Bertscore/bertscore-precision | Bertscore/bertscore-recall | Bertscore/bertscore-f1 | Meteor | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:------:|:-------:|
| 2.105 | 1.0 | 220 | 2.0884 | 0.4545 | 0.2049 | 0.3881 | 0.3905 | 0.8969 | 0.88 | 0.8882 | 0.3923 | 80.0 |
| 1.8823 | 2.0 | 440 | 2.0066 | 0.3453 | 0.1575 | 0.2965 | 0.2984 | 0.6632 | 0.6547 | 0.6587 | 0.2949 | 80.0 |
| 1.4089 | 3.0 | 660 | 2.0717 | 0.0768 | 0.0337 | 0.0637 | 0.0639 | 0.1559 | 0.1535 | 0.1547 | 0.0667 | 80.0 |
| 1.0687 | 4.0 | 880 | 2.1627 | 0.0125 | 0.0048 | 0.0104 | 0.0114 | 0.0322 | 0.0317 | 0.0319 | 0.0118 | 80.0 |
| 0.7445 | 5.0 | 1100 | 2.2927 | 0.0402 | 0.0177 | 0.0332 | 0.0332 | 0.0815 | 0.0809 | 0.0812 | 0.0374 | 80.0 |
| 0.7619 | 6.0 | 1320 | 2.4184 | 0.0185 | 0.0088 | 0.0152 | 0.016 | 0.0404 | 0.04 | 0.0402 | 0.0163 | 80.0 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|