julien-c HF staff commited on
Commit
06d4b3a
1 Parent(s): 2ed7827

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/rohanrajpal/bert-base-en-es-codemix-cased/README.md

Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - es
4
+ - en
5
+ tags:
6
+ - es
7
+ - en
8
+ - codemix
9
+ license: "apache-2.0"
10
+ datasets:
11
+ - SAIL 2017
12
+ metrics:
13
+ - fscore
14
+ - accuracy
15
+ - precision
16
+ - recall
17
+ ---
18
+
19
+ # BERT codemixed base model for spanglish (cased)
20
+
21
+ This model was built using [lingualytics](https://github.com/lingualytics/py-lingualytics), an open-source library that supports code-mixed analytics.
22
+
23
+ ## Model description
24
+
25
+ Input for the model: Any codemixed spanglish text
26
+ Output for the model: Sentiment. (0 - Negative, 1 - Neutral, 2 - Positive)
27
+
28
+ I took a bert-base-multilingual-cased model from Huggingface and finetuned it on [CS-EN-ES-CORPUS](http://www.grupolys.org/software/CS-CORPORA/cs-en-es-corpus-wassa2015.txt) dataset.
29
+
30
+ Performance of this model on the dataset
31
+
32
+ | metric | score |
33
+ |------------|----------|
34
+ | acc | 0.718615 |
35
+ | f1 | 0.71759 |
36
+ | acc_and_f1 | 0.718103 |
37
+ | precision | 0.719302 |
38
+ | recall | 0.718615 |
39
+
40
+ ## Intended uses & limitations
41
+
42
+ Make sure to preprocess your data using [these methods](https://github.com/microsoft/GLUECoS/blob/master/Data/Preprocess_Scripts/preprocess_sent_en_es.py) before using this model.
43
+
44
+ #### How to use
45
+
46
+ Here is how to use this model to get the features of a given text in *PyTorch*:
47
+
48
+ ```python
49
+ # You can include sample code which will be formatted
50
+ from transformers import BertTokenizer, BertModelForSequenceClassification
51
+ tokenizer = AutoTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased')
52
+ model = AutoModelForSequenceClassification.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased')
53
+ text = "Replace me by any text you'd like."
54
+ encoded_input = tokenizer(text, return_tensors='pt')
55
+ output = model(**encoded_input)
56
+ ```
57
+
58
+ and in *TensorFlow*:
59
+
60
+ ```python
61
+ from transformers import BertTokenizer, TFBertModel
62
+ tokenizer = BertTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased')
63
+ model = TFBertModel.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased')
64
+ text = "Replace me by any text you'd like."
65
+ encoded_input = tokenizer(text, return_tensors='tf')
66
+ output = model(encoded_input)
67
+ ```
68
+
69
+ #### Limitations and bias
70
+
71
+ Since I dont know spanish, I cant verify the quality of annotations or the dataset itself. This is a very simple transfer learning approach and I'm open to discussions to improve upon this.
72
+
73
+ ## Training data
74
+
75
+ I trained on the dataset on the [bert-base-multilingual-cased model](https://huggingface.co/bert-base-multilingual-cased).
76
+
77
+ ## Training procedure
78
+
79
+ Followed the preprocessing techniques followed [here](https://github.com/microsoft/GLUECoS/blob/master/Data/Preprocess_Scripts/preprocess_sent_en_es.py)
80
+
81
+ ## Eval results
82
+
83
+ ### BibTeX entry and citation info
84
+
85
+ ```bibtex
86
+ @inproceedings{khanuja-etal-2020-gluecos,
87
+ title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}",
88
+ author = "Khanuja, Simran and
89
+ Dandapat, Sandipan and
90
+ Srinivasan, Anirudh and
91
+ Sitaram, Sunayana and
92
+ Choudhury, Monojit",
93
+ booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
94
+ month = jul,
95
+ year = "2020",
96
+ address = "Online",
97
+ publisher = "Association for Computational Linguistics",
98
+ url = "https://www.aclweb.org/anthology/2020.acl-main.329",
99
+ pages = "3575--3585"
100
+ }
101
+ ```