rohitp1 commited on
Commit
01a4fbf
1 Parent(s): 56f3272

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - wer
6
+ model-index:
7
+ - name: subh_w2lm_base_distill_noisy_teacher_mozilla_epochs_50_batch_16
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # subh_w2lm_base_distill_noisy_teacher_mozilla_epochs_50_batch_16
15
+
16
+ This model is a fine-tuned version of [rohitp1/ws_w2lm_base_plus_finetune_teacher_noise_mozilla_100_epochs_batch_8](https://huggingface.co/rohitp1/ws_w2lm_base_plus_finetune_teacher_noise_mozilla_100_epochs_batch_8) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.4070
19
+ - Wer: 0.3226
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 256
43
+ - total_train_batch_size: 4096
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.2
47
+ - num_epochs: 50
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
54
+ | 0.1283 | 7.31 | 250 | 0.3295 | 0.3266 |
55
+ | 0.1111 | 14.63 | 500 | 0.3444 | 0.3236 |
56
+ | 0.0939 | 21.94 | 750 | 0.3664 | 0.3236 |
57
+ | 0.0826 | 29.26 | 1000 | 0.3828 | 0.3224 |
58
+ | 0.0751 | 36.57 | 1250 | 0.3977 | 0.3223 |
59
+ | 0.0703 | 43.89 | 1500 | 0.4070 | 0.3226 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.29.2
65
+ - Pytorch 1.12.1
66
+ - Datasets 2.8.0
67
+ - Tokenizers 0.13.2