File size: 3,744 Bytes
14a6663
9eeca79
ad17380
 
14a6663
dabb348
 
 
 
8899427
cf6606d
83bfb42
 
cf6606d
 
d5a624d
 
 
 
 
 
 
cf6606d
d5a624d
 
 
 
 
 
cf6606d
9eeca79
c8a6ce5
 
 
 
 
186b105
c8a6ce5
 
 
 
 
186b105
c8a6ce5
 
cf6606d
9eeca79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b900c3
 
7ceb137
3b900c3
6d60562
 
 
 
2fcc6a7
 
 
 
de375bb
 
 
 
09dbf8c
 
 
 
 
 
 
 
83bfb42
cf6606d
8358fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: llama2
datasets:
- rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored
---
___________________________
- Please note this model was not trained on the rombodawg/LosslessMegaCodeTrainingV3_MINI dataset, despite the name similarity. You can find the training data at the bottom of the model card labeled (megacode2-min100)
___________________________

This is one of the first models trained on the LosslessMegaCodeTrainingV2_1m_Evol_Uncensored dataset. The version of the dataset used for this model was filtered by removed any data with less than 100 tokens but plans for much more refined filtering are in the works

- This model was made as a colaboration between me and andreaskoepf who is an affiliate of Open Assistant. 

This model is extremely good at coding, and might be one of the best coding models for its size and much better than any 7b parameter model. Plans for bigger models are coming in the future.

### Prompt template

[chatml](https://github.com/openai/openai-python/blob/main/chatml.md) format is used:
"<|im_start|>system\n{system message}<|im_end|>\n<|im_start|>user\n{user prompt}<|im_end|>\n<|im_start|>assistant\n{Assistant answer}<|im_end|>\n" 

multi-line:

```
<|im_start|>system
{system message}<|im_end|>
<|im_start|>user
{user prompt}<|im_end|>
<|im_start|>assistant
{Assistant answer}<|im_end|>
```

Gpt4all template:

- System prompt
```
<|im_start|>system
"Below is an instruction that describes a task. Write a response that appropriately completes the request."
```
- Prompt template
```
<|im_end|>
<|im_start|>user
"%1"<|im_end|>
<|im_start|>assistant
```

Oobagooba Text-Generation-Webui Template
- user:
```
  <|im_start|>user
  {User string}<|im_end|>
```
- bot:
```
  <|im_start|>assistant
  {Bot string}<|im_end|>
```
- turn_template:
```
<|user|>\n<|user-message|>\n\n<|bot|>\n<|bot-message|>\n\n
```
- context:
```
  <|im_start|>system
  Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|>
```

Current quatizations available:

- https://huggingface.co/TheBloke/LosslessMegaCoder-Llama2-7B-Mini-GPTQ

Benchmarks for the model can be found at the link bellow the model here is called (andreaskoepf/llama2-7b-megacode2_min100)

- https://tju01.github.io/FastEval-OpenAssistant/

Sampling report:

https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-pretrained%2F2023-08-12_andreaskoepf_llama2-7b-megacode2_min100_sampling_noprefix2.json

Training information:

- https://wandb.ai/open-assistant/public-sft/runs/run17_megacode_min100

The link for the full dataset is bellow:

- https://huggingface.co/datasets/rombodawg/LosslessMegaCodeTrainingV2_1m_Evol_Uncensored

Link for the filtered dataset used to make this model are bellow:

- https://huggingface.co/datasets/andreaskoepf/megacode2-min100

The original posting for this model was uploaded at the link bellow. 

- https://huggingface.co/andreaskoepf/llama2-7b-megacode2_min100
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__LosslessMegaCoder-llama2-7b-mini)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 45.33   |
| ARC (25-shot)         | 53.5          |
| HellaSwag (10-shot)   | 77.38    |
| MMLU (5-shot)         | 49.72         |
| TruthfulQA (0-shot)   | 45.77   |
| Winogrande (5-shot)   | 74.03   |
| GSM8K (5-shot)        | 9.55        |
| DROP (3-shot)         | 7.34         |