File size: 5,021 Bytes
7b672c5
81c5ce7
3bca2a9
 
 
77a09b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b672c5
3bca2a9
 
7ba7114
608deff
 
 
3bca2a9
 
d4bec2a
3bca2a9
c75ea3b
d8bac23
3bca2a9
 
 
c75ea3b
3bca2a9
 
 
 
 
 
 
 
 
d4bec2a
3bca2a9
 
 
 
 
 
1c1251e
3bca2a9
 
81c5ce7
3bca2a9
9ceca5c
ffeb5fe
d4bec2a
3bca2a9
9ceca5c
ffeb5fe
3bca2a9
 
 
 
 
 
 
 
 
3aba335
d8bac23
77a09b2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
license: cc-by-4.0
tags:
- merge
- moe
model-index:
- name: Open_Gpt4_8x7B_v0.2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.69
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Open_Gpt4_8x7B_v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.16
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Open_Gpt4_8x7B_v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 72.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Open_Gpt4_8x7B_v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 71.92
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Open_Gpt4_8x7B_v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.58
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Open_Gpt4_8x7B_v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 59.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rombodawg/Open_Gpt4_8x7B_v0.2
      name: Open LLM Leaderboard
---
Open_Gpt4_v0.2

This is the un-quantized fp16 version for training and merging. If you want the quantized version for inference please refer to the repo bellow:

- https://huggingface.co/rombodawg/Open_Gpt4_8x7B_v0.2_q8_0_gguf

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/T7QKB0fKNHQvNqAjm8zrH.jpeg)

This model is a TIES merger of Mixtral-8x7B-Instruct-v0.1  and bagel-dpo-8x7b-v0.2 with MixtralOrochi8x7B being the Base model.



I was very impressed with MixtralOrochi8x7B performance and multifaceted usecases as it is already a merger of many usefull Mixtral models such as Mixtral instruct, 
Noromaid-v0.1-mixtral, openbuddy-mixtral and possibly other models that were not named. My goal was to expand the models capabilities and make it even more useful of a model, maybe even competitive with closed source models like Gpt-4. But for that more testing is required. I hope the community can help me determine if its deserving of its name. 😊

This is the second iteration of this model, using better models in the merger to improve performance (hopefully).

Base model: 

- https://huggingface.co/smelborp/MixtralOrochi8x7B

Merged models:

- https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

- https://huggingface.co/jondurbin/bagel-dpo-8x7b-v0.2


Instruct template: Alpaca


Merger config:
```yaml
models:
  - model: Mixtral-8x7B-Instruct-v0.1

    parameters:
      density: .5
      weight: 1
  - model: bagel-dpo-8x7b-v0.2
    parameters:
      density: .5
      weight: .7


merge_method: ties
base_model: MixtralOrochi8x7B
parameters:
  normalize: true
  int8_mask: true
dtype: float16



```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rombodawg__Open_Gpt4_8x7B_v0.2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.59|
|AI2 Reasoning Challenge (25-Shot)|68.69|
|HellaSwag (10-Shot)              |86.16|
|MMLU (5-Shot)                    |72.07|
|TruthfulQA (0-shot)              |71.92|
|Winogrande (5-shot)              |83.58|
|GSM8k (5-shot)                   |59.14|