update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
model-index:
|
7 |
+
- name: Model_ALL_Wav2Vec2
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# Model_ALL_Wav2Vec2
|
15 |
+
|
16 |
+
This model was trained from scratch on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.7779
|
19 |
+
- Wer: 0.1975
|
20 |
+
- Cer: 0.0813
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 30
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
54 |
+
| 0.8385 | 0.67 | 400 | 0.5656 | 0.3049 | 0.1100 |
|
55 |
+
| 0.3291 | 1.34 | 800 | 0.5395 | 0.3184 | 0.1128 |
|
56 |
+
| 0.258 | 2.01 | 1200 | 0.4904 | 0.2770 | 0.1030 |
|
57 |
+
| 0.217 | 2.68 | 1600 | 0.4673 | 0.2814 | 0.1073 |
|
58 |
+
| 0.1956 | 3.35 | 2000 | 0.5108 | 0.2697 | 0.1021 |
|
59 |
+
| 0.1872 | 4.02 | 2400 | 0.5531 | 0.2735 | 0.1050 |
|
60 |
+
| 0.168 | 4.69 | 2800 | 0.5113 | 0.2536 | 0.0967 |
|
61 |
+
| 0.1476 | 5.36 | 3200 | 0.6744 | 0.2420 | 0.0941 |
|
62 |
+
| 0.1531 | 6.04 | 3600 | 0.6433 | 0.2492 | 0.0962 |
|
63 |
+
| 0.1271 | 6.71 | 4000 | 0.5360 | 0.2392 | 0.0928 |
|
64 |
+
| 0.1362 | 7.38 | 4400 | 0.5451 | 0.2458 | 0.0958 |
|
65 |
+
| 0.1169 | 8.05 | 4800 | 0.6710 | 0.2470 | 0.0965 |
|
66 |
+
| 0.117 | 8.72 | 5200 | 0.5291 | 0.2480 | 0.0990 |
|
67 |
+
| 0.1146 | 9.39 | 5600 | 0.6168 | 0.2372 | 0.0927 |
|
68 |
+
| 0.1028 | 10.06 | 6000 | 0.5437 | 0.2294 | 0.0914 |
|
69 |
+
| 0.0918 | 10.73 | 6400 | 0.6350 | 0.2392 | 0.0947 |
|
70 |
+
| 0.1037 | 11.4 | 6800 | 0.6351 | 0.2346 | 0.0920 |
|
71 |
+
| 0.0926 | 12.07 | 7200 | 0.6677 | 0.2316 | 0.0924 |
|
72 |
+
| 0.0861 | 12.74 | 7600 | 0.5842 | 0.2301 | 0.0934 |
|
73 |
+
| 0.0791 | 13.41 | 8000 | 0.5862 | 0.2286 | 0.0916 |
|
74 |
+
| 0.08 | 14.08 | 8400 | 0.6183 | 0.2227 | 0.0900 |
|
75 |
+
| 0.0707 | 14.75 | 8800 | 0.5985 | 0.2351 | 0.0955 |
|
76 |
+
| 0.0719 | 15.42 | 9200 | 0.6327 | 0.2200 | 0.0897 |
|
77 |
+
| 0.0674 | 16.09 | 9600 | 0.6184 | 0.2193 | 0.0889 |
|
78 |
+
| 0.0612 | 16.76 | 10000 | 0.5501 | 0.2224 | 0.0912 |
|
79 |
+
| 0.0607 | 17.44 | 10400 | 0.5404 | 0.2233 | 0.0916 |
|
80 |
+
| 0.0612 | 18.11 | 10800 | 0.6111 | 0.2193 | 0.0889 |
|
81 |
+
| 0.0542 | 18.78 | 11200 | 0.6610 | 0.2196 | 0.0893 |
|
82 |
+
| 0.0517 | 19.45 | 11600 | 0.6083 | 0.2199 | 0.0905 |
|
83 |
+
| 0.0478 | 20.12 | 12000 | 0.6500 | 0.2130 | 0.0874 |
|
84 |
+
| 0.0464 | 20.79 | 12400 | 0.6671 | 0.2144 | 0.0863 |
|
85 |
+
| 0.0395 | 21.46 | 12800 | 0.7239 | 0.2113 | 0.0864 |
|
86 |
+
| 0.0391 | 22.13 | 13200 | 0.7791 | 0.2084 | 0.0851 |
|
87 |
+
| 0.0362 | 22.8 | 13600 | 0.6682 | 0.2083 | 0.0855 |
|
88 |
+
| 0.0396 | 23.47 | 14000 | 0.6608 | 0.2065 | 0.0848 |
|
89 |
+
| 0.0346 | 24.14 | 14400 | 0.7438 | 0.2065 | 0.0856 |
|
90 |
+
| 0.0368 | 24.81 | 14800 | 0.7382 | 0.2066 | 0.0842 |
|
91 |
+
| 0.0273 | 25.48 | 15200 | 0.7486 | 0.2020 | 0.0841 |
|
92 |
+
| 0.0286 | 26.15 | 15600 | 0.7566 | 0.2029 | 0.0838 |
|
93 |
+
| 0.0268 | 26.82 | 16000 | 0.7680 | 0.2015 | 0.0828 |
|
94 |
+
| 0.0248 | 27.49 | 16400 | 0.7499 | 0.1994 | 0.0813 |
|
95 |
+
| 0.0253 | 28.16 | 16800 | 0.7511 | 0.1998 | 0.0820 |
|
96 |
+
| 0.0228 | 28.83 | 17200 | 0.7686 | 0.1985 | 0.0820 |
|
97 |
+
| 0.0212 | 29.51 | 17600 | 0.7779 | 0.1975 | 0.0813 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.31.0
|
103 |
+
- Pytorch 2.0.1+cu117
|
104 |
+
- Datasets 1.18.3
|
105 |
+
- Tokenizers 0.13.3
|