--- library_name: transformers license: apache-2.0 base_model: anton-l/wav2vec2-base-ft-keyword-spotting tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: wav2vec2-minds14-audio-classification-en results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.07964601769911504 --- # wav2vec2-minds14-audio-classification-en This model is a fine-tuned version of [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6639 - Accuracy: 0.0796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.6727 | 0.0531 | | No log | 1.8667 | 7 | 2.6503 | 0.0531 | | 2.6417 | 2.9333 | 11 | 2.6485 | 0.0796 | | 2.6417 | 4.0 | 15 | 2.6514 | 0.0531 | | 2.6417 | 4.8 | 18 | 2.6531 | 0.0442 | | 2.6189 | 5.8667 | 22 | 2.6596 | 0.0619 | | 2.6189 | 6.9333 | 26 | 2.6650 | 0.0531 | | 2.6123 | 8.0 | 30 | 2.6639 | 0.0796 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1