Denys Rozumnyi
commited on
Commit
•
fc034ff
1
Parent(s):
c336685
Public release
Browse files- dataset.py +0 -88
- geom_solver.py +12 -26
- handcrafted_solution.py +0 -245
- helpers.py +21 -0
- testing.ipynb → main.ipynb +0 -0
- my_solution.py +2 -28
- pointnet.py +0 -213
- script_cpus.py +0 -145
- train_pointnet.py +0 -148
dataset.py
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
class ShapeNetDataset(data.Dataset):
|
4 |
-
def __init__(self,
|
5 |
-
root,
|
6 |
-
npoints=2500,
|
7 |
-
classification=False,
|
8 |
-
class_choice=None,
|
9 |
-
split='train',
|
10 |
-
data_augmentation=True):
|
11 |
-
self.npoints = npoints
|
12 |
-
self.root = root
|
13 |
-
self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
|
14 |
-
self.cat = {}
|
15 |
-
self.data_augmentation = data_augmentation
|
16 |
-
self.classification = classification
|
17 |
-
self.seg_classes = {}
|
18 |
-
|
19 |
-
with open(self.catfile, 'r') as f:
|
20 |
-
for line in f:
|
21 |
-
ls = line.strip().split()
|
22 |
-
self.cat[ls[0]] = ls[1]
|
23 |
-
#print(self.cat)
|
24 |
-
if not class_choice is None:
|
25 |
-
self.cat = {k: v for k, v in self.cat.items() if k in class_choice}
|
26 |
-
|
27 |
-
self.id2cat = {v: k for k, v in self.cat.items()}
|
28 |
-
|
29 |
-
self.meta = {}
|
30 |
-
splitfile = os.path.join(self.root, 'train_test_split', 'shuffled_{}_file_list.json'.format(split))
|
31 |
-
#from IPython import embed; embed()
|
32 |
-
filelist = json.load(open(splitfile, 'r'))
|
33 |
-
for item in self.cat:
|
34 |
-
self.meta[item] = []
|
35 |
-
|
36 |
-
for file in filelist:
|
37 |
-
_, category, uuid = file.split('/')
|
38 |
-
if category in self.cat.values():
|
39 |
-
self.meta[self.id2cat[category]].append((os.path.join(self.root, category, 'points', uuid+'.pts'),
|
40 |
-
os.path.join(self.root, category, 'points_label', uuid+'.seg')))
|
41 |
-
|
42 |
-
self.datapath = []
|
43 |
-
for item in self.cat:
|
44 |
-
for fn in self.meta[item]:
|
45 |
-
self.datapath.append((item, fn[0], fn[1]))
|
46 |
-
|
47 |
-
self.classes = dict(zip(sorted(self.cat), range(len(self.cat))))
|
48 |
-
print(self.classes)
|
49 |
-
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../misc/num_seg_classes.txt'), 'r') as f:
|
50 |
-
for line in f:
|
51 |
-
ls = line.strip().split()
|
52 |
-
self.seg_classes[ls[0]] = int(ls[1])
|
53 |
-
self.num_seg_classes = self.seg_classes[list(self.cat.keys())[0]]
|
54 |
-
print(self.seg_classes, self.num_seg_classes)
|
55 |
-
|
56 |
-
def __getitem__(self, index):
|
57 |
-
fn = self.datapath[index]
|
58 |
-
cls = self.classes[self.datapath[index][0]]
|
59 |
-
point_set = np.loadtxt(fn[1]).astype(np.float32)
|
60 |
-
seg = np.loadtxt(fn[2]).astype(np.int64)
|
61 |
-
#print(point_set.shape, seg.shape)
|
62 |
-
|
63 |
-
choice = np.random.choice(len(seg), self.npoints, replace=True)
|
64 |
-
#resample
|
65 |
-
point_set = point_set[choice, :]
|
66 |
-
|
67 |
-
point_set = point_set - np.expand_dims(np.mean(point_set, axis = 0), 0) # center
|
68 |
-
dist = np.max(np.sqrt(np.sum(point_set ** 2, axis = 1)),0)
|
69 |
-
point_set = point_set / dist #scale
|
70 |
-
|
71 |
-
if self.data_augmentation:
|
72 |
-
theta = np.random.uniform(0,np.pi*2)
|
73 |
-
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])
|
74 |
-
point_set[:,[0,2]] = point_set[:,[0,2]].dot(rotation_matrix) # random rotation
|
75 |
-
point_set += np.random.normal(0, 0.02, size=point_set.shape) # random jitter
|
76 |
-
|
77 |
-
seg = seg[choice]
|
78 |
-
point_set = torch.from_numpy(point_set)
|
79 |
-
seg = torch.from_numpy(seg)
|
80 |
-
cls = torch.from_numpy(np.array([cls]).astype(np.int64))
|
81 |
-
|
82 |
-
if self.classification:
|
83 |
-
return point_set, cls
|
84 |
-
else:
|
85 |
-
return point_set, seg
|
86 |
-
|
87 |
-
def __len__(self):
|
88 |
-
return len(self.datapath)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
geom_solver.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import numpy as np
|
2 |
from pytorch3d.ops import ball_query
|
3 |
from helpers import *
|
4 |
-
from handcrafted_solution import convert_entry_to_human_readable
|
5 |
import cv2
|
6 |
import hoho
|
7 |
import itertools
|
@@ -10,13 +9,14 @@ from pytorch3d.renderer import PerspectiveCameras
|
|
10 |
from hoho.color_mappings import gestalt_color_mapping
|
11 |
from PIL import Image
|
12 |
|
|
|
13 |
def my_empty_solution():
|
14 |
-
return np.zeros((
|
15 |
|
16 |
|
17 |
-
def
|
18 |
if vertices is None:
|
19 |
-
nverts =
|
20 |
vertices_new = np.zeros((nverts,3))
|
21 |
else:
|
22 |
nverts = vertices.shape[0]
|
@@ -31,7 +31,7 @@ class GeomSolver(object):
|
|
31 |
|
32 |
def __init__(self):
|
33 |
self.min_vertices = 10
|
34 |
-
self.mean_vertices =
|
35 |
self.max_vertices = 30
|
36 |
self.kmeans_th = 200
|
37 |
self.point_dist_th = 50
|
@@ -41,7 +41,7 @@ class GeomSolver(object):
|
|
41 |
self.return_edges = False
|
42 |
self.mean_fixed = False
|
43 |
self.repeat_predicted = True
|
44 |
-
self.
|
45 |
|
46 |
def cluster_points(self, point_types):
|
47 |
point_colors = []
|
@@ -65,9 +65,6 @@ class GeomSolver(object):
|
|
65 |
vert_mask = (vert_mask > 0).astype(np.uint8)
|
66 |
|
67 |
dist = cv2.distanceTransform(1-vert_mask, cv2.DIST_L2, 3)
|
68 |
-
# dist[dist > 100] = 100
|
69 |
-
# ndist = np.zeros_like(dist)
|
70 |
-
# ndist = cv2.normalize(dist, ndist, 0, 1.0, cv2.NORM_MINMAX)
|
71 |
|
72 |
in_this_image = np.array([cki in p.image_ids for p in self.points3D.values()])
|
73 |
uv = torch.round(self.pyt_cameras[ki].transform_points(self.verts)[:, :2]).cpu().numpy().astype(int)
|
@@ -130,16 +127,12 @@ class GeomSolver(object):
|
|
130 |
human_entry = self.human_entry
|
131 |
|
132 |
col_cams = [hoho.Rt_to_eye_target(Image.new('RGB', (human_entry['cameras'][colmap_img.camera_id].width, human_entry['cameras'][colmap_img.camera_id].height)), to_K(*human_entry['cameras'][colmap_img.camera_id].params), quaternion_to_rotation_matrix(colmap_img.qvec), colmap_img.tvec) for colmap_img in human_entry['images'].values()]
|
133 |
-
# eye, target, up, fov = col_cams[0]
|
134 |
|
135 |
cameras, images, self.points3D = human_entry['cameras'], human_entry['images'], human_entry['points3d']
|
136 |
colmap_cameras_tf = list(human_entry['images'].keys())
|
137 |
self.xyz = np.stack([p.xyz for p in self.points3D.values()])
|
138 |
color = np.stack([p.rgb for p in self.points3D.values()])
|
139 |
self.gests = [np.array(gest0) for gest0 in human_entry['gestalt']]
|
140 |
-
# for ki in range(1, len(self.gests)):
|
141 |
-
# if self.gests[ki].shape != self.gests[0].shape:
|
142 |
-
# self.gests[ki] = self.gests[ki].transpose(1,0,2)
|
143 |
|
144 |
to_camera_ids = np.array([colmap_img.camera_id for colmap_img in human_entry['images'].values()])
|
145 |
|
@@ -183,16 +176,11 @@ class GeomSolver(object):
|
|
183 |
|
184 |
self.vertices = centers
|
185 |
nvert = centers.shape[0]
|
186 |
-
# desired_vertices = (self.xyz[:,-1] > z_th).sum() // 300
|
187 |
desired_vertices = int(2.2*nvert)
|
188 |
-
# desired_vertices = self.mean_vertices
|
189 |
if desired_vertices < self.min_vertices:
|
190 |
desired_vertices = self.mean_vertices
|
191 |
if desired_vertices > self.max_vertices:
|
192 |
desired_vertices = self.mean_vertices
|
193 |
-
# if self.broken_cams.any():
|
194 |
-
# vertices = centers
|
195 |
-
# print("There are broken cams.")
|
196 |
if nvert >= desired_vertices:
|
197 |
vertices = centers[:desired_vertices]
|
198 |
print("Enough vertices.")
|
@@ -248,8 +236,8 @@ class GeomSolver(object):
|
|
248 |
uvs.append(uv)
|
249 |
|
250 |
edges = []
|
251 |
-
|
252 |
-
thresholds_min_mean = {0 : [1, 7], 1 : [3, 25], 2: [3, 1000]}
|
253 |
for i in range(pyt_centers.shape[0]):
|
254 |
for j in range(i+1, pyt_centers.shape[0]):
|
255 |
etype = (self.is_apex[i] + self.is_apex[j])
|
@@ -298,12 +286,10 @@ class GeomSolver(object):
|
|
298 |
else:
|
299 |
edges = [(0, 0)]
|
300 |
|
301 |
-
if self.
|
302 |
-
|
303 |
-
#
|
304 |
-
vertices, edges =
|
305 |
-
# vertices_new, edges = cheat_the_metric_solution(np.zeros((vertices.shape[0] // 2,3)))
|
306 |
-
# vertices = np.concatenate((vertices_new, vertices[:vertices_new.shape[0]]))
|
307 |
|
308 |
if visualize:
|
309 |
from hoho.viz3d import plot_estimate_and_gt
|
|
|
1 |
import numpy as np
|
2 |
from pytorch3d.ops import ball_query
|
3 |
from helpers import *
|
|
|
4 |
import cv2
|
5 |
import hoho
|
6 |
import itertools
|
|
|
9 |
from hoho.color_mappings import gestalt_color_mapping
|
10 |
from PIL import Image
|
11 |
|
12 |
+
|
13 |
def my_empty_solution():
|
14 |
+
return np.zeros((20,3)), [(0, 0)]
|
15 |
|
16 |
|
17 |
+
def fully_connected_solution(vertices=None):
|
18 |
if vertices is None:
|
19 |
+
nverts = 20
|
20 |
vertices_new = np.zeros((nverts,3))
|
21 |
else:
|
22 |
nverts = vertices.shape[0]
|
|
|
31 |
|
32 |
def __init__(self):
|
33 |
self.min_vertices = 10
|
34 |
+
self.mean_vertices = 20
|
35 |
self.max_vertices = 30
|
36 |
self.kmeans_th = 200
|
37 |
self.point_dist_th = 50
|
|
|
41 |
self.return_edges = False
|
42 |
self.mean_fixed = False
|
43 |
self.repeat_predicted = True
|
44 |
+
self.return_fully_connected = True
|
45 |
|
46 |
def cluster_points(self, point_types):
|
47 |
point_colors = []
|
|
|
65 |
vert_mask = (vert_mask > 0).astype(np.uint8)
|
66 |
|
67 |
dist = cv2.distanceTransform(1-vert_mask, cv2.DIST_L2, 3)
|
|
|
|
|
|
|
68 |
|
69 |
in_this_image = np.array([cki in p.image_ids for p in self.points3D.values()])
|
70 |
uv = torch.round(self.pyt_cameras[ki].transform_points(self.verts)[:, :2]).cpu().numpy().astype(int)
|
|
|
127 |
human_entry = self.human_entry
|
128 |
|
129 |
col_cams = [hoho.Rt_to_eye_target(Image.new('RGB', (human_entry['cameras'][colmap_img.camera_id].width, human_entry['cameras'][colmap_img.camera_id].height)), to_K(*human_entry['cameras'][colmap_img.camera_id].params), quaternion_to_rotation_matrix(colmap_img.qvec), colmap_img.tvec) for colmap_img in human_entry['images'].values()]
|
|
|
130 |
|
131 |
cameras, images, self.points3D = human_entry['cameras'], human_entry['images'], human_entry['points3d']
|
132 |
colmap_cameras_tf = list(human_entry['images'].keys())
|
133 |
self.xyz = np.stack([p.xyz for p in self.points3D.values()])
|
134 |
color = np.stack([p.rgb for p in self.points3D.values()])
|
135 |
self.gests = [np.array(gest0) for gest0 in human_entry['gestalt']]
|
|
|
|
|
|
|
136 |
|
137 |
to_camera_ids = np.array([colmap_img.camera_id for colmap_img in human_entry['images'].values()])
|
138 |
|
|
|
176 |
|
177 |
self.vertices = centers
|
178 |
nvert = centers.shape[0]
|
|
|
179 |
desired_vertices = int(2.2*nvert)
|
|
|
180 |
if desired_vertices < self.min_vertices:
|
181 |
desired_vertices = self.mean_vertices
|
182 |
if desired_vertices > self.max_vertices:
|
183 |
desired_vertices = self.mean_vertices
|
|
|
|
|
|
|
184 |
if nvert >= desired_vertices:
|
185 |
vertices = centers[:desired_vertices]
|
186 |
print("Enough vertices.")
|
|
|
236 |
uvs.append(uv)
|
237 |
|
238 |
edges = []
|
239 |
+
thresholds_min_mean = {0 : [5, 7], 1 : [9, 25], 2: [30, 1000]}
|
240 |
+
# thresholds_min_mean = {0 : [1, 7], 1 : [3, 25], 2: [3, 1000]}
|
241 |
for i in range(pyt_centers.shape[0]):
|
242 |
for j in range(i+1, pyt_centers.shape[0]):
|
243 |
etype = (self.is_apex[i] + self.is_apex[j])
|
|
|
286 |
else:
|
287 |
edges = [(0, 0)]
|
288 |
|
289 |
+
if self.return_fully_connected:
|
290 |
+
zero_vertices = np.zeros((vertices.shape[0],3))
|
291 |
+
# zero_vertices = self.wf_center[None].repeat(vertices.shape[0], axis=0)
|
292 |
+
vertices, edges = fully_connected_solution(zero_vertices)
|
|
|
|
|
293 |
|
294 |
if visualize:
|
295 |
from hoho.viz3d import plot_estimate_and_gt
|
handcrafted_solution.py
DELETED
@@ -1,245 +0,0 @@
|
|
1 |
-
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
|
2 |
-
|
3 |
-
import io
|
4 |
-
from PIL import Image as PImage
|
5 |
-
import numpy as np
|
6 |
-
from collections import defaultdict
|
7 |
-
import cv2
|
8 |
-
from typing import Tuple, List
|
9 |
-
from scipy.spatial.distance import cdist
|
10 |
-
|
11 |
-
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
12 |
-
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
|
13 |
-
|
14 |
-
|
15 |
-
def empty_solution():
|
16 |
-
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
|
17 |
-
return np.zeros((2,3)), [(0, 1)]
|
18 |
-
|
19 |
-
|
20 |
-
def convert_entry_to_human_readable(entry):
|
21 |
-
out = {}
|
22 |
-
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
|
23 |
-
for k, v in entry.items():
|
24 |
-
if k in already_good:
|
25 |
-
out[k] = v
|
26 |
-
continue
|
27 |
-
if k == 'points3d':
|
28 |
-
out[k] = read_points3D_binary(fid=io.BytesIO(v))
|
29 |
-
if k == 'cameras':
|
30 |
-
out[k] = read_cameras_binary(fid=io.BytesIO(v))
|
31 |
-
if k == 'images':
|
32 |
-
out[k] = read_images_binary(fid=io.BytesIO(v))
|
33 |
-
if k in ['ade20k', 'gestalt']:
|
34 |
-
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
|
35 |
-
if k == 'depthcm':
|
36 |
-
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
|
37 |
-
return out
|
38 |
-
|
39 |
-
|
40 |
-
def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
|
41 |
-
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
|
42 |
-
vertices = []
|
43 |
-
connections = []
|
44 |
-
# Apex
|
45 |
-
apex_color = np.array(gestalt_color_mapping['apex'])
|
46 |
-
apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
|
47 |
-
if apex_mask.sum() > 0:
|
48 |
-
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
|
49 |
-
(numLabels, labels, stats, centroids) = output
|
50 |
-
stats, centroids = stats[1:], centroids[1:]
|
51 |
-
|
52 |
-
for i in range(numLabels-1):
|
53 |
-
vert = {"xy": centroids[i], "type": "apex"}
|
54 |
-
vertices.append(vert)
|
55 |
-
|
56 |
-
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
|
57 |
-
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
|
58 |
-
if eave_end_mask.sum() > 0:
|
59 |
-
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
|
60 |
-
(numLabels, labels, stats, centroids) = output
|
61 |
-
stats, centroids = stats[1:], centroids[1:]
|
62 |
-
|
63 |
-
for i in range(numLabels-1):
|
64 |
-
vert = {"xy": centroids[i], "type": "eave_end_point"}
|
65 |
-
vertices.append(vert)
|
66 |
-
# Connectivity
|
67 |
-
apex_pts = []
|
68 |
-
apex_pts_idxs = []
|
69 |
-
for j, v in enumerate(vertices):
|
70 |
-
apex_pts.append(v['xy'])
|
71 |
-
apex_pts_idxs.append(j)
|
72 |
-
apex_pts = np.array(apex_pts)
|
73 |
-
|
74 |
-
# Ridge connects two apex points
|
75 |
-
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
|
76 |
-
edge_color = np.array(gestalt_color_mapping[edge_class])
|
77 |
-
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
|
78 |
-
edge_color-0.5,
|
79 |
-
edge_color+0.5),
|
80 |
-
cv2.MORPH_DILATE, np.ones((11, 11)))
|
81 |
-
line_img = np.copy(gest_seg_np) * 0
|
82 |
-
if mask.sum() > 0:
|
83 |
-
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
|
84 |
-
(numLabels, labels, stats, centroids) = output
|
85 |
-
stats, centroids = stats[1:], centroids[1:]
|
86 |
-
edges = []
|
87 |
-
for i in range(1, numLabels):
|
88 |
-
y,x = np.where(labels == i)
|
89 |
-
xleft_idx = np.argmin(x)
|
90 |
-
x_left = x[xleft_idx]
|
91 |
-
y_left = y[xleft_idx]
|
92 |
-
xright_idx = np.argmax(x)
|
93 |
-
x_right = x[xright_idx]
|
94 |
-
y_right = y[xright_idx]
|
95 |
-
edges.append((x_left, y_left, x_right, y_right))
|
96 |
-
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
|
97 |
-
edges = np.array(edges)
|
98 |
-
if (len(apex_pts) < 2) or len(edges) <1:
|
99 |
-
continue
|
100 |
-
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
|
101 |
-
connectivity_mask = pts_to_edges_dist <= edge_th
|
102 |
-
edge_connects = connectivity_mask.sum(axis=0)
|
103 |
-
for edge_idx, edgesum in enumerate(edge_connects):
|
104 |
-
if edgesum>=2:
|
105 |
-
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
|
106 |
-
for a_i, a in enumerate(connected_verts):
|
107 |
-
for b in connected_verts[a_i+1:]:
|
108 |
-
connections.append((a, b))
|
109 |
-
return vertices, connections
|
110 |
-
|
111 |
-
def get_uv_depth(vertices, depth):
|
112 |
-
'''Get the depth of the vertices from the depth image'''
|
113 |
-
uv = []
|
114 |
-
for v in vertices:
|
115 |
-
uv.append(v['xy'])
|
116 |
-
uv = np.array(uv)
|
117 |
-
uv_int = uv.astype(np.int32)
|
118 |
-
H, W = depth.shape[:2]
|
119 |
-
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
|
120 |
-
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
|
121 |
-
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
|
122 |
-
return uv, vertex_depth
|
123 |
-
|
124 |
-
|
125 |
-
def merge_vertices_3d(vert_edge_per_image, th=0.1):
|
126 |
-
'''Merge vertices that are close to each other in 3D space and are of same types'''
|
127 |
-
all_3d_vertices = []
|
128 |
-
connections_3d = []
|
129 |
-
all_indexes = []
|
130 |
-
cur_start = 0
|
131 |
-
types = []
|
132 |
-
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
|
133 |
-
types += [int(v['type']=='apex') for v in vertices]
|
134 |
-
all_3d_vertices.append(vertices_3d)
|
135 |
-
connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
|
136 |
-
cur_start+=len(vertices_3d)
|
137 |
-
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
|
138 |
-
#print (connections_3d)
|
139 |
-
distmat = cdist(all_3d_vertices, all_3d_vertices)
|
140 |
-
types = np.array(types).reshape(-1,1)
|
141 |
-
same_types = cdist(types, types)
|
142 |
-
mask_to_merge = (distmat <= th) & (same_types==0)
|
143 |
-
new_vertices = []
|
144 |
-
new_connections = []
|
145 |
-
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
|
146 |
-
to_merge_final = defaultdict(list)
|
147 |
-
for i in range(len(all_3d_vertices)):
|
148 |
-
for j in to_merge:
|
149 |
-
if i in j:
|
150 |
-
to_merge_final[i]+=j
|
151 |
-
for k, v in to_merge_final.items():
|
152 |
-
to_merge_final[k] = list(set(v))
|
153 |
-
already_there = set()
|
154 |
-
merged = []
|
155 |
-
for k, v in to_merge_final.items():
|
156 |
-
if k in already_there:
|
157 |
-
continue
|
158 |
-
merged.append(v)
|
159 |
-
for vv in v:
|
160 |
-
already_there.add(vv)
|
161 |
-
old_idx_to_new = {}
|
162 |
-
count=0
|
163 |
-
for idxs in merged:
|
164 |
-
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
|
165 |
-
for idx in idxs:
|
166 |
-
old_idx_to_new[idx] = count
|
167 |
-
count +=1
|
168 |
-
#print (connections_3d)
|
169 |
-
new_vertices=np.array(new_vertices)
|
170 |
-
#print (connections_3d)
|
171 |
-
for conn in connections_3d:
|
172 |
-
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
|
173 |
-
if new_con[0] == new_con[1]:
|
174 |
-
continue
|
175 |
-
if new_con not in new_connections:
|
176 |
-
new_connections.append(new_con)
|
177 |
-
#print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
|
178 |
-
return new_vertices, new_connections
|
179 |
-
|
180 |
-
def prune_not_connected(all_3d_vertices, connections_3d):
|
181 |
-
'''Prune vertices that are not connected to any other vertex'''
|
182 |
-
connected = defaultdict(list)
|
183 |
-
for c in connections_3d:
|
184 |
-
connected[c[0]].append(c)
|
185 |
-
connected[c[1]].append(c)
|
186 |
-
new_indexes = {}
|
187 |
-
new_verts = []
|
188 |
-
connected_out = []
|
189 |
-
for k,v in connected.items():
|
190 |
-
vert = all_3d_vertices[k]
|
191 |
-
if tuple(vert) not in new_verts:
|
192 |
-
new_verts.append(tuple(vert))
|
193 |
-
new_indexes[k]=len(new_verts) -1
|
194 |
-
for k,v in connected.items():
|
195 |
-
for vv in v:
|
196 |
-
connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
|
197 |
-
connected_out=list(set(connected_out))
|
198 |
-
|
199 |
-
return np.array(new_verts), connected_out
|
200 |
-
|
201 |
-
|
202 |
-
def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
|
203 |
-
good_entry = convert_entry_to_human_readable(entry)
|
204 |
-
vert_edge_per_image = {}
|
205 |
-
for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'],
|
206 |
-
good_entry['depthcm'],
|
207 |
-
good_entry['K'],
|
208 |
-
good_entry['R'],
|
209 |
-
good_entry['t']
|
210 |
-
)):
|
211 |
-
gest_seg = gest.resize(depth.size)
|
212 |
-
gest_seg_np = np.array(gest_seg).astype(np.uint8)
|
213 |
-
# Metric3D
|
214 |
-
depth_np = np.array(depth) / 2.5 # 2.5 is the scale estimation coefficient
|
215 |
-
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 20.)
|
216 |
-
if (len(vertices) < 2) or (len(connections) < 1):
|
217 |
-
print (f'Not enough vertices or connections in image {i}')
|
218 |
-
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
|
219 |
-
continue
|
220 |
-
uv, depth_vert = get_uv_depth(vertices, depth_np)
|
221 |
-
# Normalize the uv to the camera intrinsics
|
222 |
-
xy_local = np.ones((len(uv), 3))
|
223 |
-
xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
|
224 |
-
xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
|
225 |
-
# Get the 3D vertices
|
226 |
-
vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
|
227 |
-
world_to_cam = np.eye(4)
|
228 |
-
world_to_cam[:3, :3] = R
|
229 |
-
world_to_cam[:3, 3] = t.reshape(-1)
|
230 |
-
cam_to_world = np.linalg.inv(world_to_cam)
|
231 |
-
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
|
232 |
-
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
|
233 |
-
vert_edge_per_image[i] = vertices, connections, vertices_3d
|
234 |
-
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0)
|
235 |
-
all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
|
236 |
-
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
|
237 |
-
print (f'Not enough vertices or connections in the 3D vertices')
|
238 |
-
return (good_entry['__key__'], *empty_solution())
|
239 |
-
if visualize:
|
240 |
-
from hoho.viz3d import plot_estimate_and_gt
|
241 |
-
plot_estimate_and_gt( all_3d_vertices_clean,
|
242 |
-
connections_3d_clean,
|
243 |
-
good_entry['wf_vertices'],
|
244 |
-
good_entry['wf_edges'])
|
245 |
-
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
helpers.py
CHANGED
@@ -3,6 +3,27 @@ from PIL import Image as PImage
|
|
3 |
import io
|
4 |
from scipy.spatial.distance import cdist
|
5 |
from scipy.optimize import linear_sum_assignment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
def to_K(f, cx, cy):
|
|
|
3 |
import io
|
4 |
from scipy.spatial.distance import cdist
|
5 |
from scipy.optimize import linear_sum_assignment
|
6 |
+
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
7 |
+
|
8 |
+
|
9 |
+
def convert_entry_to_human_readable(entry):
|
10 |
+
out = {}
|
11 |
+
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
|
12 |
+
for k, v in entry.items():
|
13 |
+
if k in already_good:
|
14 |
+
out[k] = v
|
15 |
+
continue
|
16 |
+
if k == 'points3d':
|
17 |
+
out[k] = read_points3D_binary(fid=io.BytesIO(v))
|
18 |
+
if k == 'cameras':
|
19 |
+
out[k] = read_cameras_binary(fid=io.BytesIO(v))
|
20 |
+
if k == 'images':
|
21 |
+
out[k] = read_images_binary(fid=io.BytesIO(v))
|
22 |
+
if k in ['ade20k', 'gestalt']:
|
23 |
+
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
|
24 |
+
if k == 'depthcm':
|
25 |
+
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
|
26 |
+
return out
|
27 |
|
28 |
|
29 |
def to_K(f, cx, cy):
|
testing.ipynb → main.ipynb
RENAMED
The diff for this file is too large to render.
See raw diff
|
|
my_solution.py
CHANGED
@@ -9,43 +9,17 @@ from scipy.spatial.distance import cdist
|
|
9 |
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
10 |
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
|
11 |
|
12 |
-
from geom_solver import GeomSolver, my_empty_solution,
|
13 |
-
|
14 |
-
|
15 |
-
def convert_entry_to_human_readable(entry):
|
16 |
-
out = {}
|
17 |
-
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
|
18 |
-
for k, v in entry.items():
|
19 |
-
if k in already_good:
|
20 |
-
out[k] = v
|
21 |
-
continue
|
22 |
-
if k == 'points3d':
|
23 |
-
out[k] = read_points3D_binary(fid=io.BytesIO(v))
|
24 |
-
if k == 'cameras':
|
25 |
-
out[k] = read_cameras_binary(fid=io.BytesIO(v))
|
26 |
-
if k == 'images':
|
27 |
-
out[k] = read_images_binary(fid=io.BytesIO(v))
|
28 |
-
if k in ['ade20k', 'gestalt']:
|
29 |
-
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
|
30 |
-
if k == 'depthcm':
|
31 |
-
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
|
32 |
-
return out
|
33 |
|
34 |
|
35 |
def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
|
36 |
-
# return (entry['__key__'], *my_empty_solution())
|
37 |
vertices0, edges0 = my_empty_solution()
|
38 |
try:
|
39 |
vertices, edges = GeomSolver().solve(entry)
|
40 |
except:
|
41 |
print('ERROR')
|
42 |
-
|
43 |
-
vertices, edges = cheat_the_metric_solution()
|
44 |
|
45 |
-
# if vertices.shape[0] < vertices0.shape[0]:
|
46 |
-
# verts_new = vertices0
|
47 |
-
# verts_new[:vertices.shape[0]] = vertices
|
48 |
-
# vertices = verts_new
|
49 |
|
50 |
if (len(edges) < 1) and (len(vertices) >= 2):
|
51 |
# print("Added only edges")
|
|
|
9 |
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
10 |
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
|
11 |
|
12 |
+
from geom_solver import GeomSolver, my_empty_solution, fully_connected_solution
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
|
|
|
16 |
vertices0, edges0 = my_empty_solution()
|
17 |
try:
|
18 |
vertices, edges = GeomSolver().solve(entry)
|
19 |
except:
|
20 |
print('ERROR')
|
21 |
+
vertices, edges = fully_connected_solution()
|
|
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
if (len(edges) < 1) and (len(vertices) >= 2):
|
25 |
# print("Added only edges")
|
pointnet.py
DELETED
@@ -1,213 +0,0 @@
|
|
1 |
-
from __future__ import print_function
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.parallel
|
5 |
-
import torch.utils.data
|
6 |
-
from torch.autograd import Variable
|
7 |
-
import numpy as np
|
8 |
-
import torch.nn.functional as F
|
9 |
-
|
10 |
-
|
11 |
-
class STN3d(nn.Module):
|
12 |
-
def __init__(self):
|
13 |
-
super(STN3d, self).__init__()
|
14 |
-
self.conv1 = torch.nn.Conv1d(3, 64, 1)
|
15 |
-
self.conv2 = torch.nn.Conv1d(64, 128, 1)
|
16 |
-
self.conv3 = torch.nn.Conv1d(128, 1024, 1)
|
17 |
-
self.fc1 = nn.Linear(1024, 512)
|
18 |
-
self.fc2 = nn.Linear(512, 256)
|
19 |
-
self.fc3 = nn.Linear(256, 9)
|
20 |
-
self.relu = nn.ReLU()
|
21 |
-
|
22 |
-
self.bn1 = nn.BatchNorm1d(64)
|
23 |
-
self.bn2 = nn.BatchNorm1d(128)
|
24 |
-
self.bn3 = nn.BatchNorm1d(1024)
|
25 |
-
self.bn4 = nn.BatchNorm1d(512)
|
26 |
-
self.bn5 = nn.BatchNorm1d(256)
|
27 |
-
|
28 |
-
|
29 |
-
def forward(self, x):
|
30 |
-
batchsize = x.size()[0]
|
31 |
-
x = F.relu(self.bn1(self.conv1(x)))
|
32 |
-
x = F.relu(self.bn2(self.conv2(x)))
|
33 |
-
x = F.relu(self.bn3(self.conv3(x)))
|
34 |
-
x = torch.max(x, 2, keepdim=True)[0]
|
35 |
-
x = x.view(-1, 1024)
|
36 |
-
|
37 |
-
x = F.relu(self.bn4(self.fc1(x)))
|
38 |
-
x = F.relu(self.bn5(self.fc2(x)))
|
39 |
-
x = self.fc3(x)
|
40 |
-
|
41 |
-
iden = Variable(torch.from_numpy(np.array([1,0,0,0,1,0,0,0,1]).astype(np.float32))).view(1,9).repeat(batchsize,1)
|
42 |
-
if x.is_cuda:
|
43 |
-
iden = iden.cuda()
|
44 |
-
x = x + iden
|
45 |
-
x = x.view(-1, 3, 3)
|
46 |
-
return x
|
47 |
-
|
48 |
-
|
49 |
-
class STNkd(nn.Module):
|
50 |
-
def __init__(self, k=64):
|
51 |
-
super(STNkd, self).__init__()
|
52 |
-
self.conv1 = torch.nn.Conv1d(k, 64, 1)
|
53 |
-
self.conv2 = torch.nn.Conv1d(64, 128, 1)
|
54 |
-
self.conv3 = torch.nn.Conv1d(128, 1024, 1)
|
55 |
-
self.fc1 = nn.Linear(1024, 512)
|
56 |
-
self.fc2 = nn.Linear(512, 256)
|
57 |
-
self.fc3 = nn.Linear(256, k*k)
|
58 |
-
self.relu = nn.ReLU()
|
59 |
-
|
60 |
-
self.bn1 = nn.BatchNorm1d(64)
|
61 |
-
self.bn2 = nn.BatchNorm1d(128)
|
62 |
-
self.bn3 = nn.BatchNorm1d(1024)
|
63 |
-
self.bn4 = nn.BatchNorm1d(512)
|
64 |
-
self.bn5 = nn.BatchNorm1d(256)
|
65 |
-
|
66 |
-
self.k = k
|
67 |
-
|
68 |
-
def forward(self, x):
|
69 |
-
batchsize = x.size()[0]
|
70 |
-
x = F.relu(self.bn1(self.conv1(x)))
|
71 |
-
x = F.relu(self.bn2(self.conv2(x)))
|
72 |
-
x = F.relu(self.bn3(self.conv3(x)))
|
73 |
-
x = torch.max(x, 2, keepdim=True)[0]
|
74 |
-
x = x.view(-1, 1024)
|
75 |
-
|
76 |
-
x = F.relu(self.bn4(self.fc1(x)))
|
77 |
-
x = F.relu(self.bn5(self.fc2(x)))
|
78 |
-
x = self.fc3(x)
|
79 |
-
|
80 |
-
iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view(1,self.k*self.k).repeat(batchsize,1)
|
81 |
-
if x.is_cuda:
|
82 |
-
iden = iden.cuda()
|
83 |
-
x = x + iden
|
84 |
-
x = x.view(-1, self.k, self.k)
|
85 |
-
return x
|
86 |
-
|
87 |
-
class PointNetfeat(nn.Module):
|
88 |
-
def __init__(self, global_feat = True, feature_transform = False):
|
89 |
-
super(PointNetfeat, self).__init__()
|
90 |
-
self.stn = STN3d()
|
91 |
-
self.conv1 = torch.nn.Conv1d(3, 64, 1)
|
92 |
-
self.conv2 = torch.nn.Conv1d(64, 128, 1)
|
93 |
-
self.conv3 = torch.nn.Conv1d(128, 1024, 1)
|
94 |
-
self.bn1 = nn.BatchNorm1d(64)
|
95 |
-
self.bn2 = nn.BatchNorm1d(128)
|
96 |
-
self.bn3 = nn.BatchNorm1d(1024)
|
97 |
-
self.global_feat = global_feat
|
98 |
-
self.feature_transform = feature_transform
|
99 |
-
if self.feature_transform:
|
100 |
-
self.fstn = STNkd(k=64)
|
101 |
-
|
102 |
-
def forward(self, x):
|
103 |
-
n_pts = x.size()[2]
|
104 |
-
trans = self.stn(x)
|
105 |
-
x = x.transpose(2, 1)
|
106 |
-
x = torch.bmm(x, trans)
|
107 |
-
x = x.transpose(2, 1)
|
108 |
-
x = F.relu(self.bn1(self.conv1(x)))
|
109 |
-
|
110 |
-
if self.feature_transform:
|
111 |
-
trans_feat = self.fstn(x)
|
112 |
-
x = x.transpose(2,1)
|
113 |
-
x = torch.bmm(x, trans_feat)
|
114 |
-
x = x.transpose(2,1)
|
115 |
-
else:
|
116 |
-
trans_feat = None
|
117 |
-
|
118 |
-
pointfeat = x
|
119 |
-
x = F.relu(self.bn2(self.conv2(x)))
|
120 |
-
x = self.bn3(self.conv3(x))
|
121 |
-
x = torch.max(x, 2, keepdim=True)[0]
|
122 |
-
x = x.view(-1, 1024)
|
123 |
-
if self.global_feat:
|
124 |
-
return x, trans, trans_feat
|
125 |
-
else:
|
126 |
-
x = x.view(-1, 1024, 1).repeat(1, 1, n_pts)
|
127 |
-
return torch.cat([x, pointfeat], 1), trans, trans_feat
|
128 |
-
|
129 |
-
class PointNetCls(nn.Module):
|
130 |
-
def __init__(self, k=2, feature_transform=False):
|
131 |
-
super(PointNetCls, self).__init__()
|
132 |
-
self.feature_transform = feature_transform
|
133 |
-
self.feat = PointNetfeat(global_feat=True, feature_transform=feature_transform)
|
134 |
-
self.fc1 = nn.Linear(1024, 512)
|
135 |
-
self.fc2 = nn.Linear(512, 256)
|
136 |
-
self.fc3 = nn.Linear(256, k)
|
137 |
-
self.dropout = nn.Dropout(p=0.3)
|
138 |
-
self.bn1 = nn.BatchNorm1d(512)
|
139 |
-
self.bn2 = nn.BatchNorm1d(256)
|
140 |
-
self.relu = nn.ReLU()
|
141 |
-
|
142 |
-
def forward(self, x):
|
143 |
-
x, trans, trans_feat = self.feat(x)
|
144 |
-
x = F.relu(self.bn1(self.fc1(x)))
|
145 |
-
x = F.relu(self.bn2(self.dropout(self.fc2(x))))
|
146 |
-
x = self.fc3(x)
|
147 |
-
return F.log_softmax(x, dim=1), trans, trans_feat
|
148 |
-
|
149 |
-
|
150 |
-
class PointNetDenseCls(nn.Module):
|
151 |
-
def __init__(self, k = 2, feature_transform=False):
|
152 |
-
super(PointNetDenseCls, self).__init__()
|
153 |
-
self.k = k
|
154 |
-
self.feature_transform=feature_transform
|
155 |
-
self.feat = PointNetfeat(global_feat=False, feature_transform=feature_transform)
|
156 |
-
self.conv1 = torch.nn.Conv1d(1088, 512, 1)
|
157 |
-
self.conv2 = torch.nn.Conv1d(512, 256, 1)
|
158 |
-
self.conv3 = torch.nn.Conv1d(256, 128, 1)
|
159 |
-
self.conv4 = torch.nn.Conv1d(128, self.k, 1)
|
160 |
-
self.bn1 = nn.BatchNorm1d(512)
|
161 |
-
self.bn2 = nn.BatchNorm1d(256)
|
162 |
-
self.bn3 = nn.BatchNorm1d(128)
|
163 |
-
|
164 |
-
def forward(self, x):
|
165 |
-
batchsize = x.size()[0]
|
166 |
-
n_pts = x.size()[2]
|
167 |
-
x, trans, trans_feat = self.feat(x)
|
168 |
-
x = F.relu(self.bn1(self.conv1(x)))
|
169 |
-
x = F.relu(self.bn2(self.conv2(x)))
|
170 |
-
x = F.relu(self.bn3(self.conv3(x)))
|
171 |
-
x = self.conv4(x)
|
172 |
-
x = x.transpose(2,1).contiguous()
|
173 |
-
x = F.log_softmax(x.view(-1,self.k), dim=-1)
|
174 |
-
x = x.view(batchsize, n_pts, self.k)
|
175 |
-
return x, trans, trans_feat
|
176 |
-
|
177 |
-
def feature_transform_regularizer(trans):
|
178 |
-
d = trans.size()[1]
|
179 |
-
batchsize = trans.size()[0]
|
180 |
-
I = torch.eye(d)[None, :, :]
|
181 |
-
if trans.is_cuda:
|
182 |
-
I = I.cuda()
|
183 |
-
loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2,1)) - I, dim=(1,2)))
|
184 |
-
return loss
|
185 |
-
|
186 |
-
if __name__ == '__main__':
|
187 |
-
sim_data = Variable(torch.rand(32,3,2500))
|
188 |
-
trans = STN3d()
|
189 |
-
out = trans(sim_data)
|
190 |
-
print('stn', out.size())
|
191 |
-
print('loss', feature_transform_regularizer(out))
|
192 |
-
|
193 |
-
sim_data_64d = Variable(torch.rand(32, 64, 2500))
|
194 |
-
trans = STNkd(k=64)
|
195 |
-
out = trans(sim_data_64d)
|
196 |
-
print('stn64d', out.size())
|
197 |
-
print('loss', feature_transform_regularizer(out))
|
198 |
-
|
199 |
-
pointfeat = PointNetfeat(global_feat=True)
|
200 |
-
out, _, _ = pointfeat(sim_data)
|
201 |
-
print('global feat', out.size())
|
202 |
-
|
203 |
-
pointfeat = PointNetfeat(global_feat=False)
|
204 |
-
out, _, _ = pointfeat(sim_data)
|
205 |
-
print('point feat', out.size())
|
206 |
-
|
207 |
-
cls = PointNetCls(k = 5)
|
208 |
-
out, _, _ = cls(sim_data)
|
209 |
-
print('class', out.size())
|
210 |
-
|
211 |
-
seg = PointNetDenseCls(k = 3)
|
212 |
-
out, _, _ = seg(sim_data)
|
213 |
-
print('seg', out.size())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
script_cpus.py
DELETED
@@ -1,145 +0,0 @@
|
|
1 |
-
### This is example of the script that will be run in the test environment.
|
2 |
-
### Some parts of the code are compulsory and you should NOT CHANGE THEM.
|
3 |
-
### They are between '''---compulsory---''' comments.
|
4 |
-
### You can change the rest of the code to define and test your solution.
|
5 |
-
### However, you should not change the signature of the provided function.
|
6 |
-
### The script would save "submission.parquet" file in the current directory.
|
7 |
-
### The actual logic of the solution is implemented in the `handcrafted_solution.py` file.
|
8 |
-
### The `handcrafted_solution.py` file is a placeholder for your solution.
|
9 |
-
### You should implement the logic of your solution in that file.
|
10 |
-
### You can use any additional files and subdirectories to organize your code.
|
11 |
-
|
12 |
-
'''---compulsory---'''
|
13 |
-
# import subprocess
|
14 |
-
# from pathlib import Path
|
15 |
-
# def install_package_from_local_file(package_name, folder='packages'):
|
16 |
-
# """
|
17 |
-
# Installs a package from a local .whl file or a directory containing .whl files using pip.
|
18 |
-
|
19 |
-
# Parameters:
|
20 |
-
# path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
|
21 |
-
# """
|
22 |
-
# try:
|
23 |
-
# pth = str(Path(folder) / package_name)
|
24 |
-
# subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
|
25 |
-
# "--no-index", # Do not use package index
|
26 |
-
# "--find-links", pth, # Look for packages in the specified directory or at the file
|
27 |
-
# package_name]) # Specify the package to install
|
28 |
-
# print(f"Package installed successfully from {pth}")
|
29 |
-
# except subprocess.CalledProcessError as e:
|
30 |
-
# print(f"Failed to install package from {pth}. Error: {e}")
|
31 |
-
|
32 |
-
# install_package_from_local_file('hoho')
|
33 |
-
|
34 |
-
import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE
|
35 |
-
# import subprocess
|
36 |
-
# import importlib
|
37 |
-
# from pathlib import Path
|
38 |
-
# import subprocess
|
39 |
-
|
40 |
-
|
41 |
-
# ### The function below is useful for installing additional python wheels.
|
42 |
-
# def install_package_from_local_file(package_name, folder='packages'):
|
43 |
-
# """
|
44 |
-
# Installs a package from a local .whl file or a directory containing .whl files using pip.
|
45 |
-
|
46 |
-
# Parameters:
|
47 |
-
# path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
|
48 |
-
# """
|
49 |
-
# try:
|
50 |
-
# pth = str(Path(folder) / package_name)
|
51 |
-
# subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
|
52 |
-
# "--no-index", # Do not use package index
|
53 |
-
# "--find-links", pth, # Look for packages in the specified directory or at the file
|
54 |
-
# package_name]) # Specify the package to install
|
55 |
-
# print(f"Package installed successfully from {pth}")
|
56 |
-
# except subprocess.CalledProcessError as e:
|
57 |
-
# print(f"Failed to install package from {pth}. Error: {e}")
|
58 |
-
|
59 |
-
|
60 |
-
# pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
|
61 |
-
# install_package_from_local_file('webdataset')
|
62 |
-
# install_package_from_local_file('tqdm')
|
63 |
-
|
64 |
-
### Here you can import any library or module you want.
|
65 |
-
### The code below is used to read and parse the input dataset.
|
66 |
-
### Please, do not modify it.
|
67 |
-
|
68 |
-
import webdataset as wds
|
69 |
-
from tqdm import tqdm
|
70 |
-
from typing import Dict
|
71 |
-
import pandas as pd
|
72 |
-
from transformers import AutoTokenizer
|
73 |
-
import os
|
74 |
-
import time
|
75 |
-
import io
|
76 |
-
from PIL import Image as PImage
|
77 |
-
import numpy as np
|
78 |
-
|
79 |
-
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
|
80 |
-
from hoho import proc, Sample
|
81 |
-
|
82 |
-
def convert_entry_to_human_readable(entry):
|
83 |
-
out = {}
|
84 |
-
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
|
85 |
-
for k, v in entry.items():
|
86 |
-
if k in already_good:
|
87 |
-
out[k] = v
|
88 |
-
continue
|
89 |
-
if k == 'points3d':
|
90 |
-
out[k] = read_points3D_binary(fid=io.BytesIO(v))
|
91 |
-
if k == 'cameras':
|
92 |
-
out[k] = read_cameras_binary(fid=io.BytesIO(v))
|
93 |
-
if k == 'images':
|
94 |
-
out[k] = read_images_binary(fid=io.BytesIO(v))
|
95 |
-
if k in ['ade20k', 'gestalt']:
|
96 |
-
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
|
97 |
-
if k == 'depthcm':
|
98 |
-
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
|
99 |
-
return out
|
100 |
-
|
101 |
-
'''---end of compulsory---'''
|
102 |
-
|
103 |
-
### The part below is used to define and test your solution.
|
104 |
-
|
105 |
-
from pathlib import Path
|
106 |
-
def save_submission(submission, path):
|
107 |
-
"""
|
108 |
-
Saves the submission to a specified path.
|
109 |
-
|
110 |
-
Parameters:
|
111 |
-
submission (List[Dict[]]): The submission to save.
|
112 |
-
path (str): The path to save the submission to.
|
113 |
-
"""
|
114 |
-
sub = pd.DataFrame(submission, columns=["__key__", "wf_vertices", "wf_edges"])
|
115 |
-
sub.to_parquet(path)
|
116 |
-
print(f"Submission saved to {path}")
|
117 |
-
|
118 |
-
if __name__ == "__main__":
|
119 |
-
from my_solution import predict
|
120 |
-
print ("------------ Loading dataset------------ ")
|
121 |
-
params = hoho.get_params()
|
122 |
-
dataset = hoho.get_dataset(decode=None, split='all', dataset_type='webdataset')
|
123 |
-
|
124 |
-
print('------------ Now you can do your solution ---------------')
|
125 |
-
solution = []
|
126 |
-
from concurrent.futures import ProcessPoolExecutor
|
127 |
-
with ProcessPoolExecutor(max_workers=8) as pool:
|
128 |
-
results = []
|
129 |
-
for i, sample in enumerate(tqdm(dataset)):
|
130 |
-
results.append(pool.submit(predict, sample, visualize=False))
|
131 |
-
|
132 |
-
for i, result in enumerate(tqdm(results)):
|
133 |
-
key, pred_vertices, pred_edges = result.result()
|
134 |
-
solution.append({
|
135 |
-
'__key__': key,
|
136 |
-
'wf_vertices': pred_vertices.tolist(),
|
137 |
-
'wf_edges': pred_edges
|
138 |
-
})
|
139 |
-
if i % 100 == 0:
|
140 |
-
# incrementally save the results in case we run out of time
|
141 |
-
print(f"Processed {i} samples")
|
142 |
-
# save_submission(solution, Path(params['output_path']) / "submission.parquet")
|
143 |
-
print('------------ Saving results ---------------')
|
144 |
-
save_submission(solution, Path(params['output_path']) / "submission.parquet")
|
145 |
-
print("------------ Done ------------ ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_pointnet.py
DELETED
@@ -1,148 +0,0 @@
|
|
1 |
-
from __future__ import print_function
|
2 |
-
import argparse
|
3 |
-
import os
|
4 |
-
import random
|
5 |
-
import torch
|
6 |
-
import torch.nn.parallel
|
7 |
-
import torch.optim as optim
|
8 |
-
import torch.utils.data
|
9 |
-
from pointnet.dataset import ShapeNetDataset, ModelNetDataset
|
10 |
-
from pointnet import PointNetCls, feature_transform_regularizer
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from tqdm import tqdm
|
13 |
-
|
14 |
-
|
15 |
-
parser = argparse.ArgumentParser()
|
16 |
-
parser.add_argument(
|
17 |
-
'--batchSize', type=int, default=32, help='input batch size')
|
18 |
-
parser.add_argument(
|
19 |
-
'--num_points', type=int, default=2500, help='input batch size')
|
20 |
-
parser.add_argument(
|
21 |
-
'--workers', type=int, help='number of data loading workers', default=4)
|
22 |
-
parser.add_argument(
|
23 |
-
'--nepoch', type=int, default=250, help='number of epochs to train for')
|
24 |
-
parser.add_argument('--outf', type=str, default='cls', help='output folder')
|
25 |
-
parser.add_argument('--model', type=str, default='', help='model path')
|
26 |
-
parser.add_argument('--dataset', type=str, required=True, help="dataset path")
|
27 |
-
parser.add_argument('--dataset_type', type=str, default='shapenet', help="dataset type shapenet|modelnet40")
|
28 |
-
parser.add_argument('--feature_transform', action='store_true', help="use feature transform")
|
29 |
-
|
30 |
-
opt = parser.parse_args()
|
31 |
-
print(opt)
|
32 |
-
|
33 |
-
blue = lambda x: '\033[94m' + x + '\033[0m'
|
34 |
-
|
35 |
-
opt.manualSeed = random.randint(1, 10000) # fix seed
|
36 |
-
print("Random Seed: ", opt.manualSeed)
|
37 |
-
random.seed(opt.manualSeed)
|
38 |
-
torch.manual_seed(opt.manualSeed)
|
39 |
-
|
40 |
-
if opt.dataset_type == 'shapenet':
|
41 |
-
dataset = ShapeNetDataset(
|
42 |
-
root=opt.dataset,
|
43 |
-
classification=True,
|
44 |
-
npoints=opt.num_points)
|
45 |
-
|
46 |
-
test_dataset = ShapeNetDataset(
|
47 |
-
root=opt.dataset,
|
48 |
-
classification=True,
|
49 |
-
split='test',
|
50 |
-
npoints=opt.num_points,
|
51 |
-
data_augmentation=False)
|
52 |
-
elif opt.dataset_type == 'modelnet40':
|
53 |
-
dataset = ModelNetDataset(
|
54 |
-
root=opt.dataset,
|
55 |
-
npoints=opt.num_points,
|
56 |
-
split='trainval')
|
57 |
-
|
58 |
-
test_dataset = ModelNetDataset(
|
59 |
-
root=opt.dataset,
|
60 |
-
split='test',
|
61 |
-
npoints=opt.num_points,
|
62 |
-
data_augmentation=False)
|
63 |
-
else:
|
64 |
-
exit('wrong dataset type')
|
65 |
-
|
66 |
-
|
67 |
-
dataloader = torch.utils.data.DataLoader(
|
68 |
-
dataset,
|
69 |
-
batch_size=opt.batchSize,
|
70 |
-
shuffle=True,
|
71 |
-
num_workers=int(opt.workers))
|
72 |
-
|
73 |
-
testdataloader = torch.utils.data.DataLoader(
|
74 |
-
test_dataset,
|
75 |
-
batch_size=opt.batchSize,
|
76 |
-
shuffle=True,
|
77 |
-
num_workers=int(opt.workers))
|
78 |
-
|
79 |
-
print(len(dataset), len(test_dataset))
|
80 |
-
num_classes = len(dataset.classes)
|
81 |
-
print('classes', num_classes)
|
82 |
-
|
83 |
-
try:
|
84 |
-
os.makedirs(opt.outf)
|
85 |
-
except OSError:
|
86 |
-
pass
|
87 |
-
|
88 |
-
classifier = PointNetCls(k=num_classes, feature_transform=opt.feature_transform)
|
89 |
-
|
90 |
-
if opt.model != '':
|
91 |
-
classifier.load_state_dict(torch.load(opt.model))
|
92 |
-
|
93 |
-
|
94 |
-
optimizer = optim.Adam(classifier.parameters(), lr=0.001, betas=(0.9, 0.999))
|
95 |
-
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)
|
96 |
-
classifier.cuda()
|
97 |
-
|
98 |
-
num_batch = len(dataset) / opt.batchSize
|
99 |
-
|
100 |
-
for epoch in range(opt.nepoch):
|
101 |
-
scheduler.step()
|
102 |
-
for i, data in enumerate(dataloader, 0):
|
103 |
-
points, target = data
|
104 |
-
target = target[:, 0]
|
105 |
-
points = points.transpose(2, 1)
|
106 |
-
points, target = points.cuda(), target.cuda()
|
107 |
-
optimizer.zero_grad()
|
108 |
-
classifier = classifier.train()
|
109 |
-
pred, trans, trans_feat = classifier(points)
|
110 |
-
loss = F.nll_loss(pred, target)
|
111 |
-
if opt.feature_transform:
|
112 |
-
loss += feature_transform_regularizer(trans_feat) * 0.001
|
113 |
-
loss.backward()
|
114 |
-
optimizer.step()
|
115 |
-
pred_choice = pred.data.max(1)[1]
|
116 |
-
correct = pred_choice.eq(target.data).cpu().sum()
|
117 |
-
print('[%d: %d/%d] train loss: %f accuracy: %f' % (epoch, i, num_batch, loss.item(), correct.item() / float(opt.batchSize)))
|
118 |
-
|
119 |
-
if i % 10 == 0:
|
120 |
-
j, data = next(enumerate(testdataloader, 0))
|
121 |
-
points, target = data
|
122 |
-
target = target[:, 0]
|
123 |
-
points = points.transpose(2, 1)
|
124 |
-
points, target = points.cuda(), target.cuda()
|
125 |
-
classifier = classifier.eval()
|
126 |
-
pred, _, _ = classifier(points)
|
127 |
-
loss = F.nll_loss(pred, target)
|
128 |
-
pred_choice = pred.data.max(1)[1]
|
129 |
-
correct = pred_choice.eq(target.data).cpu().sum()
|
130 |
-
print('[%d: %d/%d] %s loss: %f accuracy: %f' % (epoch, i, num_batch, blue('test'), loss.item(), correct.item()/float(opt.batchSize)))
|
131 |
-
|
132 |
-
torch.save(classifier.state_dict(), '%s/cls_model_%d.pth' % (opt.outf, epoch))
|
133 |
-
|
134 |
-
total_correct = 0
|
135 |
-
total_testset = 0
|
136 |
-
for i,data in tqdm(enumerate(testdataloader, 0)):
|
137 |
-
points, target = data
|
138 |
-
target = target[:, 0]
|
139 |
-
points = points.transpose(2, 1)
|
140 |
-
points, target = points.cuda(), target.cuda()
|
141 |
-
classifier = classifier.eval()
|
142 |
-
pred, _, _ = classifier(points)
|
143 |
-
pred_choice = pred.data.max(1)[1]
|
144 |
-
correct = pred_choice.eq(target.data).cpu().sum()
|
145 |
-
total_correct += correct.item()
|
146 |
-
total_testset += points.size()[0]
|
147 |
-
|
148 |
-
print("final accuracy {}".format(total_correct / float(total_testset)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|