Structured Semantic 3D Reconstruction — Solutions and Takeaways

Denys Rozumnyi
ETH Zurich

denys.rozumnyi@inf.ethz.ch

Abstract

This paper presents a winning solution to the Structured
Semantic 3D Reconstruction Challenge at CVPR’24. A
COLMAP- and geometry-based solution is proposed to ex-
tract approximately half of all vertices, which achieves high
precision but low recall. An edge prediction procedure is
also proposed, but it does not achieve better results due to
the presented shortcomings of the used metric. These short-
comings lead to a very strong and simple solution, which
can be written with one line of code. This one-line solution
wins the challenge, and it is argued that it is very hard to
beat with the current metric. Several ideas for improvement
are proposed.

1. Introduction

The objective of the Structured Semantic 3D Reconstruc-
tion (S23DR) Challenge is to facilitate the development of
methods for transforming posed images into a structured ge-
ometric representation (wire-frame), from which semanti-
cally meaningful measurements can be extracted [1].

The organizers provide a large dataset with 4316 sam-
ples for training and 175 for validation. The dataset con-
tains various types of inputs, including COLMAP [3, 4] re-
construction, monocular depth, segmentations, and others.
The ground truth is a graph with a set of vertices and edges
between them. In the current form, the task is to predict
such wire-frame reconstruction of mostly roofs of scanned
houses.

2. COLMAP-based solution

The COLMAP-based solution is a geometry-based solution
with no learning apart from hyper-parameters tuning on the
training dataset.

2.1. Predicting vertices

The proposed solution takes as input the COLMAP point
cloud and the gestalt segmentations. Then, we select all
points that are suspected to be vertex points, which we later

cluster with K-Means clustering. We repeat the same pro-
cedure for the apex and eave-end-point vertices separately
using the same operations. Without loss of generality, we
refer to a vertex label in the following explanations.

Point selection. In order to select relevant points from the
COLMAP point cloud, each COLMAP point is projected
to the image plane, and if it is a visible point in this view,
we compute a distance to the closest vertex label (using a
distance transform from a binary image of the given vertex
label, either apex or eave-end-point). Then, we average this
distance over all views where this point is visible. Finally,
the points are selected if this distance is below the threshold
Oist, Which is set empirically to 50 cm.

Density-based filtering. In order to filter outliers, we
also remove points without enough support. We filter based
on density, where we only keep points that have at least 3
neighbors within a distance of at most 40 cm.

K-Means clustering. The selected points that passed the
density check are clustered by K-Means clustering (with
termination criteria of 200 maximum iterations and thresh-
old 0.3 cm). The correct number K of points is found in
the following way. We start with K = 1 and iteratively in-
crease it to at most K = 30 (maximum number of vertices
in the training dataset). We iterate until adding another clus-
ter would make the distance between the two closest clus-
ters below a certain threshold O jyseer, set to 200 cm. Finally,
the predicted vertices are all clusters that have at least 3 as-
signed points. This way, we generate our set of vertices
(apex and eave-end-point separately).

2.2. Predicting edges

Given the estimated vertices, we iterate over all possible
pairs of vertices and check whether it is an edge. First, we
label apex vertices as [; = 1 and eave-end-point vertices
as [; = 0. Then, for each possible edge (i, j), we compute
their edge type as [; +1;. The type is O for gestalt label eave,
1 for rake and valley, and 2 for label ridge.

For each possible edge (4, j), we sample 20 points be-
tween them by linear interpolation and project them to each
view, where both vertices ¢ and j are visible. If there is
no view where both vertices are visible, we discard such

edges. Then, for all sampled interpolated points, we project
them to the image plane and again compute an average dis-
tance to the gestalt label given by the edge type (using mor-
phological dilation and distance transform). Then, we keep
only those edges for which the average distance is below a
threshold O,ean and also, there is at least one view with
an average distance below an even lower threshold O,
(meaning that there is at least one view where this edge is
clearly visible). For each edge type, we use different thresh-
olds. For type 0, it is 15 and 5 respectively, for both types 1
and 2, it is 40 and 20.

3. Understanding and fixing the metric

The most important part of the challenge is to understand

every piece of the metric. The metric is called Wire-frame

Edit Distance (WED), which is adopted from [2]. The met-

ric contains a sum of 5 different terms:

¢ Vertex translation costs V;.

¢ Vertex deletion costs V.

¢ Vertex insertion costs V.

* Edge deletion costs E.

» Edge insertion costs F;.

After spotting several bugs in the metric, the metric has been

fixed. However, it still needs a lot of improvement. In its

current form, WED has several shortcomings:

e If the mean and standard deviation of the prediction and
the ground truth vertices are very different, yet the so-
lution looks relatively good (as in Fig. 2), the so-called
pre-registration moves the predicted vertices to a wrong
location. This is especially true when the prediction has
some missing vertices.

* The dataset contains many vertices of small regions (as
in Fig. 2 (right), which are never visible in the given in-
puts. Such vertices (and edges) are impossible to esti-
mate. However, they change the mean/std of the predic-
tion by a lot. This means that a high-quality reconstruc-
tion with such missing irrelevant vertices would have a
high error due to this pre-registration.
Penalizing missing vertices in the current form enforces
the solution to predict more vertices, e.g. if we know that
we always predict roughly half of the vertices, it is ben-
eficial to add zero/dummy vertices (or better repeat the
estimated vertices).
Since pre-registration and bipartite matching change pre-
dictions by a wide margin, predicting edges is beneficial
only in case almost all vertices are correctly estimated.
A solution with all correct vertices but no edges would
achieve WED of 1. This also means that if WED is much
higher than 1, it does not make sense to predict edges at
all. And given that the best-scoring solutions in this chal-
lenge were in the range of WED = 2, not dealing with
edges was the best solution for everyone.

Edge deletion E; is computed over predicted vertices.

Method WED
COLMAP-based (vertices, edges) 2.367
COLMAP-based (vertices) 2.352
COLMAP-based (vertices) + zeros 2.178
COLMAP-based (vertices) + center 2.057
COLMAP-based (vertices) + repeat 1.910
COLMAP-based (vertices, edges) + repeat 1.963
one-line(18) 1.806
one-line(19) 1.760
one-line(20) 1.722
one-line(21) 1.689
one-line(22) 1.667
one-line(23) 1.657
one-line(24) 1.648
one-line(25) 1.645
one-line(26) 1.651
one-line(27) 1.659
one-line(28) 1.673
one-line(Nprea) 1.706
one-line(Ng) 1.321

Table 1. Ablation study of different methods. We compare a
COLMAP-based solution with a simple one-line baseline. The
scores are averaged over 175 samples from the validation split.

One-line solution. All these shortcomings lead to one sim-
ple one-line solution, which achieves extremely low WED.
All vertices are in the origin. The graph is fully connected.
In the case that we know the ground truth number of ver-
tices, this solution makes 4 out of 5 WED terms zero except
for V;. If the number of vertices is slightly off, we also have
a vertex deletion or vertex insertion cost, but never both.
The edge deletion is always zero, no matter how many ver-
tices are predicted. On the other hand, the edge insertion is
above zero if the predicted number of vertices is lower than
the ground truth number of vertices. Therefore, it is better
to overshoot than undershoot, i.e. predicting more vertices
is better.

def one_line_solution(n):

return np.zeros((n,3)), list(itertools.product(list(range(n)), list(range(n))))

Figure 1. One-line solution.

4. Experiments

We measure the scores on the provided validation set with
175 examples. All development and fine-tuning was done
on the training dataset.

Ablation study. The main ablation study is shown in
Fig. 1. The first six rows show different versions of pre-
dicting vertices. Empirically, we computed that our method
produces around 45 % of ground truth vertices. Given the

Figure 2. Qualitative results. Left: WED with edges is 1.773, without edges 1.661. Right: WED with edges is 2.206, without 2.073.

Method WED Vi Vi Vi Eq E;
COLMAP-based (vertices) 2.000 1808 0 8260 0 10072
COLMAP-based (vertices, edges) 1.663 1808 0 8260 0 6681
COLMAP-based (vertices, edges), no pre-reg. 1.523 393 0 8260 0 6681
COLMAP-based (vertices, edges) + repeat 1.773 6202 458 0 2004 9187
COLMAP-based (vertices) + repeat 1.661 6202 458 0 0 10072
one-line(Npred = 19) 1.193 11559 458 0 0 0
one-line(Ny = 18) 1.148 11559 0 0 0 0
one-line(25) 1.467 11559 3212 0 0 0
one-line(17) 1.343 10543 0 917 0 2063

Table 2. Metric terms for a selected example from Fig. 2 (left).

shortcomings of the metric, we had to come up with a strat-
egy to add more vertices (2.2 times more than we predict).
Adding just points in origin already improves the score,
adding a center of gravity of COLMAP points improves
it even further. However, the best strategy is to augment
vertices just by simply copying the same vertices one by
one. As shown in rows 1 and 6, adding our edge predic-
tion makes the performance worse. This is expected due
to pre-registration, matching, and also those repeating ver-
tices because it is no longer clear which one of them will be
matched, and everything becomes very ambiguous.

The best score is achieved by one-line(25), which is
above the average number of vertices in the dataset be-
cause it is better to predict more than less as already
explained before. The one-line solution was discov-
ered several hours before the deadline, and the submit-
ted version is one-line(Npreq), Where Nprq is the num-
ber of vertices predicted by the proposed method. How-
ever, at the time of writing this paper, it was found that
one-line(25) achieves even better performance. An oracle-
based method one-line(Ny) achieves impressively high per-
formance. Achieving this performance seems to be possible

by training a regression model just to predict the number of
vertices.

Qualitative results. Several examples are shown in Fig. 2.
Our method has overall high precision but low recall. And
such solutions are penalized a lot by the current metric. For
instance, Fig. 2 (left) shows a good reconstruction. We
predict 9 vertices, and with repetition, we have 19 ver-
tices. Whereas the ground truth contains 18 vertices. In this
case, our prediction with edges achieves WED of 1.773, and
without edges 1.661. This is mostly due to the fact that after
the pre-registeration of WED, the vertices are moved closer
to the left side (where there are many irrelevant vertices that
change the center of gravity), and then the bipartite match-
ing is wrong. Every term of the metric for this example can
be seen in Table 2.

5. Ideas for improving the metric

For future work, the metric needs to be adapted and the
dataset cleaned (e.g. removing irrelevant wire-frames of
small parts that are not even visible in the inputs). The met-
ric could be improved by avoiding pre-registration. How-

ever, in our opinion, it must be completely re-designed.
First of all, we argue that using vertex translation, insertion,
and deletion costs should be avoided completely since they
involve too many hand-crafted thresholds. Predicting cor-
rect edges is impossible without predicting correct vertices;
thus, penalizing missing or extra edges already penalizes
missing or extra vertices. This will also make all solutions
that predict only vertices obsolete (as it should be). More-
over, imagine a case in which there are three vertices on one
line with two connected lines. If the prediction instead pre-
dicts only two border points with one long edge, the loss
is extremely high. However, this solution is acceptable and
quite plausible. In order to achieve this, one possibility is to
perform matching with edges.

The current metric should at least be updated to com-
puted edge deletion costs in the ground truth edge lengths
space.

6. Conclusion

We proposed several approaches to the wire-frame seman-
tic 3D reconstruction task. Several ablation studies showed
that the proposed one-line solution achieves very high per-
formance.

References

[1] Structured semantic 3d reconstruction (s23dr) challenge. In
CVPR, 2024. 1

[2] Yujia Liu, Stefano D’aronco, Konrad Schindler, and Jan Dirk
Wegner. Pc2wf: 3d wireframe reconstruction from raw point
clouds. ArXiv, abs/2103.02766, 2021. 2

[3] Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016. 1

[4] Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for unstruc-
tured multi-view stereo. In ECCV, 2016. 1

	. Introduction
	. COLMAP-based solution
	. Predicting vertices
	. Predicting edges

	. Understanding and fixing the metric
	. Experiments
	. Ideas for improving the metric
	. Conclusion

