File size: 1,966 Bytes
6564abd
 
cff8a0e
6564abd
44c2595
6564abd
 
cff8a0e
6564abd
 
 
 
 
 
 
 
 
 
cff8a0e
6564abd
 
 
 
 
 
cff8a0e
6564abd
 
 
 
 
 
 
 
 
cff8a0e
 
6564abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff8a0e
6564abd
 
 
 
 
cff8a0e
 
 
 
6564abd
 
 
 
cff8a0e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- renovation
metrics:
- accuracy
model-index:
- name: vit-base-beans-demo-v5
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: beans
      type: renovation
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6575342465753424
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-beans-demo-v5

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7925
- Accuracy: 0.6575

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1711        | 0.81  | 100  | 1.0255          | 0.5982   |
| 0.7083        | 1.61  | 200  | 0.7925          | 0.6575   |
| 0.2479        | 2.42  | 300  | 0.8712          | 0.6941   |
| 0.127         | 3.23  | 400  | 0.8440          | 0.6941   |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2