--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - renovation metrics: - accuracy model-index: - name: vit-base-beans-demo-v5 results: - task: name: Image Classification type: image-classification dataset: name: beans type: renovation config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6575342465753424 --- # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.7925 - Accuracy: 0.6575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1711 | 0.81 | 100 | 1.0255 | 0.5982 | | 0.7083 | 1.61 | 200 | 0.7925 | 0.6575 | | 0.2479 | 2.42 | 300 | 0.8712 | 0.6941 | | 0.127 | 3.23 | 400 | 0.8440 | 0.6941 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2