update model card README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model: google/vit-base-patch16-224-in21k
|
4 |
tags:
|
5 |
-
- image-classification
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
- renovation
|
@@ -15,7 +14,7 @@ model-index:
|
|
15 |
name: Image Classification
|
16 |
type: image-classification
|
17 |
dataset:
|
18 |
-
name:
|
19 |
type: renovation
|
20 |
config: default
|
21 |
split: validation
|
@@ -23,7 +22,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
# vit-base-renovation
|
33 |
|
34 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss:
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -59,21 +58,36 @@ The following hyperparameters were used during training:
|
|
59 |
- seed: 42
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
75 |
|
76 |
- Transformers 4.31.0
|
77 |
- Pytorch 2.0.1+cu118
|
78 |
-
- Datasets 2.
|
79 |
- Tokenizers 0.13.3
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: google/vit-base-patch16-224-in21k
|
4 |
tags:
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- renovation
|
|
|
14 |
name: Image Classification
|
15 |
type: image-classification
|
16 |
dataset:
|
17 |
+
name: renovation
|
18 |
type: renovation
|
19 |
config: default
|
20 |
split: validation
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.6454545454545455
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
# vit-base-renovation
|
32 |
|
33 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the renovation dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.1838
|
36 |
+
- Accuracy: 0.6455
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 4
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.9741 | 0.2 | 25 | 0.9575 | 0.4818 |
|
68 |
+
| 0.9827 | 0.4 | 50 | 0.9344 | 0.5182 |
|
69 |
+
| 0.8578 | 0.6 | 75 | 0.8343 | 0.6182 |
|
70 |
+
| 0.9373 | 0.81 | 100 | 0.8896 | 0.5909 |
|
71 |
+
| 0.7462 | 1.01 | 125 | 0.7969 | 0.6364 |
|
72 |
+
| 0.6953 | 1.21 | 150 | 0.8157 | 0.6364 |
|
73 |
+
| 0.5461 | 1.41 | 175 | 0.7634 | 0.6773 |
|
74 |
+
| 0.6445 | 1.61 | 200 | 0.7743 | 0.6545 |
|
75 |
+
| 0.5437 | 1.81 | 225 | 0.7717 | 0.65 |
|
76 |
+
| 0.5911 | 2.02 | 250 | 0.8339 | 0.6364 |
|
77 |
+
| 0.2483 | 2.22 | 275 | 0.8596 | 0.6318 |
|
78 |
+
| 0.378 | 2.42 | 300 | 0.9897 | 0.6182 |
|
79 |
+
| 0.2742 | 2.62 | 325 | 0.8965 | 0.6909 |
|
80 |
+
| 0.1898 | 2.82 | 350 | 1.0262 | 0.6682 |
|
81 |
+
| 0.2116 | 3.02 | 375 | 1.1058 | 0.6409 |
|
82 |
+
| 0.0702 | 3.23 | 400 | 1.0473 | 0.6545 |
|
83 |
+
| 0.0566 | 3.43 | 425 | 1.0962 | 0.6682 |
|
84 |
+
| 0.0775 | 3.63 | 450 | 1.1502 | 0.65 |
|
85 |
+
| 0.0485 | 3.83 | 475 | 1.1838 | 0.6455 |
|
86 |
|
87 |
|
88 |
### Framework versions
|
89 |
|
90 |
- Transformers 4.31.0
|
91 |
- Pytorch 2.0.1+cu118
|
92 |
+
- Datasets 2.14.2
|
93 |
- Tokenizers 0.13.3
|