--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - renovation metrics: - accuracy model-index: - name: vit-base-renovation results: - task: name: Image Classification type: image-classification dataset: name: renovations type: renovation config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6666666666666666 --- # vit-base-renovation This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the renovations dataset. It achieves the following results on the evaluation set: - Loss: 0.7651 - Accuracy: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9092 | 1.67 | 100 | 0.8281 | 0.5686 | | 0.3809 | 3.33 | 200 | 0.7651 | 0.6667 | | 0.1873 | 5.0 | 300 | 1.0182 | 0.6667 | | 0.019 | 6.67 | 400 | 1.2346 | 0.6471 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3