--- language: - en - ja - de - fr - multilingual tags: - t5 - adapter - flan-t5 - peft - lora datasets: - yahma/alpaca-cleaned - databricks/databricks-dolly-15k - samsum pipeline_tag: text2text-generation base_model: google/flan-t5-xl --- # Usage Find below some example scripts on how to use the model in `transformers`: ## Using the Pytorch model ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load peft config for pre-trained checkpoint etc. peft_model_id = "rsonavane/flan-t5-xl-alpaca-dolly-lora-peft" config = PeftConfig.from_pretrained(peft_model_id) # load base LLM model and tokenizer model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map={"":0}) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id, device_map={"":0}) ``` ## Prompt generation ```python def generate_prompt(instruction: str, input_ctxt: str = "") -> str: if input_ctxt: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input_ctxt} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" ``` ## Inference ```python input_ctxt = "" instruction = "" input_text = generate_prompt(instruction, input_ctxt) input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` ## Training Details Intended for conversation analysis, closed qna and summarization. Trained on instructions from doll-15k, alpaca-52k and samsum dataset.