|
from omegaconf import OmegaConf |
|
from ldm.util import instantiate_from_config |
|
import importlib |
|
import os |
|
import torch |
|
|
|
|
|
def create_model(config_path): |
|
config = OmegaConf.load(config_path) |
|
model = instantiate_from_config(config.model).cpu() |
|
print(f'Loaded model config from [{config_path}]') |
|
return model |
|
|
|
def instantiate_from_config(config): |
|
if not "target" in config: |
|
if config == '__is_first_stage__': |
|
return None |
|
elif config == "__is_unconditional__": |
|
return None |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", dict())) |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
def get_state_dict(d): |
|
return d.get('state_dict', d) |
|
|
|
def load_state_dict(ckpt_path, location='cpu'): |
|
_, extension = os.path.splitext(ckpt_path) |
|
if extension.lower() == ".safetensors": |
|
import safetensors.torch |
|
state_dict = safetensors.torch.load_file(ckpt_path, device=location) |
|
else: |
|
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location))) |
|
state_dict = get_state_dict(state_dict) |
|
print(f'Loaded state_dict from [{ckpt_path}]') |
|
return state_dict |