File size: 3,714 Bytes
2a2ed12 b5c9a1e 782c6d3 b5c9a1e 2a2ed12 b5c9a1e 240d3f7 b5c9a1e 4aee43f f8388bf b5c9a1e 69a5974 782c6d3 85e1768 fc07d8c 782c6d3 4a545aa b5c9a1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: gpl-3.0
tags:
- DocVQA
- Document Question Answering
- Document Visual Question Answering
datasets:
- rubentito/mp-docvqa
language:
- en
---
# T5 base fine-tuned on MP-DocVQA
This is [pretrained](https://huggingface.co/t5-base) T5 base fine-tuned on Multipage DocVQA (MP-DocVQA) dataset.
This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
- Results on the MP-DocVQA dataset are reported in Table 2.
- Training hyperparameters can be found in Table 8 of Appendix D.
## How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = LongformerTokenizerFast.from_pretrained("rubentito/t5-base-mpdocvqa")
model = LongformerForQuestionAnswering.from_pretrained("rubentito/t5-base-mpdocvqa")
context = "Huggingface has democratized NLP. Huge thanks to Huggingface for this."
question = "What has Huggingface done?"
input_text = "question: {:s} context: {:s}".format(question, context)
encoding = tokenizer(input_text, return_tensors="pt")
output = self.model.generate(**encoding)
answer = tokenizer.decode(output['sequences'], skip_special_tokens=True)
```
## Metrics
**Average Normalized Levenshtein Similarity (ANLS)**
The standard metric for text-based VQA tasks (ST-VQA and DocVQA). It evaluates the method's reasoning capabilities while smoothly penalizes OCR recognition errors.
Check [Scene Text Visual Question Answering](https://arxiv.org/abs/1905.13648) for detailed information.
**Answer Page Prediction Accuracy (APPA)**
In the MP-DocVQA task, the models can provide the index of the page where the information required to answer the question is located. For this subtask accuracy is used to evaluate the predictions: i.e. if the predicted page is correct or not.
Check [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/abs/2212.05935) for detailed information.
## Model results
Extended experimentation can be found in Table 2 of [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf).
You can also check the live leaderboard at the [RRC Portal](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=4).
| Model | HF name | Parameters | ANLS | APPA |
|-----------------------------------------------------------------------------------|:--------------------------------------|:-------------:|:-------------:|:---------:|
| [Bert large](https://huggingface.co/rubentito/bert-large-mpdocvqa) | rubentito/bert-large-mpdocvqa | 334M | 0.4183 | 51.6177 |
| [Longformer base](https://huggingface.co/rubentito/longformer-base-mpdocvqa) | rubentito/longformer-base-mpdocvqa | 148M | 0.5287 | 71.1696 |
| [BigBird ITC base](https://huggingface.co/rubentito/bigbird-base-itc-mpdocvqa) | rubentito/bigbird-base-itc-mpdocvqa | 131M | 0.4929 | 67.5433 |
| [LayoutLMv3 base](https://huggingface.co/rubentito/layoutlmv3-base-mpdocvqa) | rubentito/layoutlmv3-base-mpdocvqa | 125M | 0.4538 | 51.9426 |
| [**T5 base**](https://huggingface.co/rubentito/t5-base-mpdocvqa) | rubentito/t5-base-mpdocvqa | 223M | 0.5050 | 0.0000 |
| [Hi-VT5](https://huggingface.co/rubentito/hivt5-base-mpdocvqa) | rubentito/hivt5-base-mpdocvqa | 316M | 0.6201 | 79.23 |
## Citation Information
```tex
@article{tito2022hierarchical,
title={Hierarchical multimodal transformers for Multi-Page DocVQA},
author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest},
journal={arXiv preprint arXiv:2212.05935},
year={2022}
}
``` |