--- license: gpl-3.0 tags: - DocVQA - Document Question Answering - Document Visual Question Answering datasets: - MP-DocVQA language: - en --- # T5 base fine-tuned on MP-DocVQA This is [pretrained](https://huggingface.co/t5-base) T5 base and fine-tuned on Multipage DocVQA (MP-DocVQA) dataset. This model was used as a baseline in [Hierarchical multimodal transformers for Multi-Page DocVQA](https://arxiv.org/pdf/2212.05935.pdf). - Results on the MP-DocVQA dataset are reported in Table 2. - Training hyperparameters can be found in Table 8 of Appendix D. - ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = LongformerTokenizerFast.from_pretrained("rubentito/t5-base-mpdocvqa") model = LongformerForQuestionAnswering.from_pretrained("rubentito/t5-base-mpdocvqa") context = "Huggingface has democratized NLP. Huge thanks to Huggingface for this." question = "What has Huggingface done?" input_text = "question: {:s} context: {:s}".format(question, context) encoding = tokenizer(input_text, return_tensors="pt") output = self.model.generate(**encoding) answer = tokenizer.decode(output['sequences'], skip_special_tokens=True) ``` ## BibTeX entry ```tex @article{tito2022hierarchical, title={Hierarchical multimodal transformers for Multi-Page DocVQA}, author={Tito, Rub{\`e}n and Karatzas, Dimosthenis and Valveny, Ernest}, journal={arXiv preprint arXiv:2212.05935}, year={2022} } ```