File size: 7,213 Bytes
05884cf
62dc2bf
 
e535110
86e902e
 
 
 
 
62dc2bf
 
 
 
e3659d9
62dc2bf
 
 
 
 
 
 
 
450f439
e535110
450f439
 
 
 
 
e825c76
e37f74f
e478b53
e825c76
e478b53
 
e825c76
e478b53
 
05884cf
86e902e
e535110
86e902e
 
e535110
62dc2bf
86e902e
 
 
 
 
 
 
 
 
 
 
 
 
62dc2bf
86e902e
e535110
86e902e
 
 
 
 
 
 
62dc2bf
86e902e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e535110
 
86e902e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62dc2bf
 
acded7e
 
 
 
 
 
559c538
acded7e
 
 
 
 
559c538
 
 
 
acded7e
 
 
 
 
 
86e902e
 
e535110
86e902e
62dc2bf
86e902e
62dc2bf
86e902e
 
 
 
 
e535110
 
86e902e
 
 
 
 
23f0b6c
 
 
62dc2bf
 
 
 
 
 
 
 
 
 
23f0b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62dc2bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
language: 
  - pt
thumbnail: "Portuguese BERT for the Legal Domain"
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
- stsb_multi_mt
- rufimelo/PortugueseLegalSentences-v0

widget:
- source_sentence: "O advogado apresentou as provas ao juíz."
  sentences:
    - "O juíz leu as provas."
    - "O juíz leu o recurso."
    - "O juíz atirou uma pedra."
  example_title: "Example 1"
model-index:
- name: BERTimbau
  results:
  - task:
      name: STS
      type: STS
    metrics:
      - name: Pearson Correlation - assin Dataset
        type: Pearson Correlation
        value: 0.7749
      - name: Pearson Correlation - assin2 Dataset
        type: Pearson Correlation
        value: 0.8470
      - name: Pearson Correlation - stsb_multi_mt pt Dataset
        type: Pearson Correlation
        value: 0.8364
---

# rufimelo/Legal-BERTimbau-sts-large-ma-v3

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
rufimelo/Legal-BERTimbau-sts-large-ma-v3 is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.
It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]

model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-large-ma-v3')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)


```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-large-ma-v3')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-large-ma-v3')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```


## Evaluation Results STS


| Model| Assin | Assin2|stsb_multi_mt pt| avg|
| ---------------------------------------- | ---------- | ---------- |---------- |---------- |
| Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|0.72462|
| Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |0.78886|
| Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|0.79307|
| Legal-BERTimbau-base-TSDAE-sts|0.78814 |0.81380 |0.75777|0.78657|
| Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|0.79369|
| Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |0.79715|
| Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|0.80142|
| Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| 0.81863|
| Legal-BERTimbau-sts-large-ma-v3| 0.7749| **0.8470**| 0.8364| **0.81943**|
| Legal-BERTimbau-large-v2-sts| 0.71665| 0.80106| 0.73724| 0.75165|
| Legal-BERTimbau-large-TSDAE-sts| 0.72376| 0.79261| 0.73635| 0.75090|
| Legal-BERTimbau-large-TSDAE-sts-v2| 0.81326| 0.83130| 0.786314| 0.81029|
| Legal-BERTimbau-large-TSDAE-sts-v3|0.80703 |0.82270 |0.77638 |0.80204 |
| ---------------------------------------- | ---------- |---------- |---------- |---------- |
| BERTimbau base Fine-tuned for STS|**0.78455** | 0.80626|0.82841|0.80640|
| BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|0.81245|
| ---------------------------------------- | ---------- |---------- |---------- |---------- |
| paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |0.78429|
| paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831   |**0.84575**|0.80682|
## Training

rufimelo/Legal-BERTimbau-sts-large-ma-v3 is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.

Firstly, due to the lack of portuguese datasets, it was trained using multilingual knowledge distillation. For the Multilingual Knowledge Distillation process, the teacher model was 'sentence-transformers/stsb-roberta-large', the supposed supported language as English and the language to learn was portuguese.

It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. (batch 8, 5 epochs 'lr': 1e-5)


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

## Citing & Authors

If you use this work, please cite:

```bibtex
@inproceedings{souza2020bertimbau,
  author    = {F{\'a}bio Souza and
               Rodrigo Nogueira and
               Roberto Lotufo},
  title     = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
  booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
  year      = {2020}
}

@inproceedings{fonseca2016assin,
  title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
  author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
  booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
  pages={13--15},
  year={2016}
}

@inproceedings{real2020assin,
  title={The assin 2 shared task: a quick overview},
  author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
  booktitle={International Conference on Computational Processing of the Portuguese Language},
  pages={406--412},
  year={2020},
  organization={Springer}
}
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}

```