--- language: - pt thumbnail: "Portugues SBERT for the Legal Domain" pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers datasets: - assin - assin2 - stsb_multi_mt widget: - source_sentence: "O advogado apresentou as provas ao juíz." sentences: - "O juíz leu as provas." - "O juíz leu o recurso." - "O juíz atirou uma pedra." example_title: "Example 1" model-index: - name: SBERTimbau results: - task: name: STS type: STS metrics: - name: Pearson Correlation on assin Dataset type: Pearson Correlation value: 0.7749 - name: Pearson Correlation on assin2 Dataset type: Pearson Correlation value: 0.8470 - name: Pearson Correlation on stsb_multi_mt pt Dataset type: Pearson Correlation value: 0.8364 --- # rufimelo/Legal-SBERTimbau-sts-large-ma This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. rufimelo/Legal-SBERTimbau-sts-large-ma-v3 is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) alrge. It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Isto é um exemplo", "Isto é um outro exemplo"] model = SentenceTransformer('rufimelo/Legal-SBERTimbau-sts-large-ma-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-sts-large-ma-v3') model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-sts-large-ma-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results STS | Model| Assin | Assin2|stsb_multi_mt pt| | ---------------------------------------- | ---------- | ---------- |---------- | | Legal-SBERTimbau-sts-base| 0.71457| 0.73545 | | | Legal-SBERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 | | Legal-SBERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178| | Legal-SBERTimbau-sts-large| 0.76629| 0.82357 | | | Legal-SBERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 | | Legal-SBERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608| | Legal-SBERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| | Legal-SBERTimbau-sts-large-ma-v3| 0.7749| 0.8470| 0.8364| | ---------------------------------------- | ---------- |---------- |---------- | | BERTimbau base Fine-tuned for STS|0.78455 | 0.80626|0.82841| | BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784| | ---------------------------------------- | ---------- |---------- |---------- | | paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 | | paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |0.84575 | ## Training rufimelo/Legal-SBERTimbau-sts-large-ma-v3 is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large. Firstly, due to the lack of portuguese datasets, it was trained using multilingual knowledge distillation. For the Multilingual Knowledge Distillation process, the teacher model was 'sentence-transformers/stsb-roberta-large', the supposed supported language as English and the language to learn was portuguese. It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. (batch 8, 5 epochs 'lr': 1e-5) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors If you use this work, please cite BERTimbau's work: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```