--- language: - en license: other tags: - trl - sft - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct pipeline_tag: text-generation model-index: - name: Llama3-stanford-encyclopedia-philosophy-QA results: [] --- # Llama3-stanford-encyclopedia-philosophy-QA This model is a Qlora finetune of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the [Stanford Encyclopedia of Philosophy-instruct](https://huggingface.co/datasets/ruggsea/stanford-encyclopedia-of-philosophy_instruct) dataset. It is meant for answering philosophical questions in a more formal tone. ## Model description The model was trained with the following system prompt: ``` "You are an expert and informative yet accessible Philosophy university professor. Students will pose you philosophical questions, answer them in a correct and rigorous but not to obscure way." ``` Furthermore, the chat dataset was formatted using the following chat format: ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1