File size: 2,814 Bytes
8380e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645eedd
8380e13
 
 
 
 
 
 
 
 
645eedd
 
8380e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424480b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8380e13
 
 
 
 
424480b
 
8380e13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-papsmear
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8970588235294118
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned-papsmear

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3057
- Accuracy: 0.8971

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.4898        | 0.9935  | 38   | 1.3709          | 0.4632   |
| 0.8902        | 1.9869  | 76   | 0.9261          | 0.6324   |
| 0.9107        | 2.9804  | 114  | 0.8400          | 0.6397   |
| 0.564         | 4.0     | 153  | 0.6937          | 0.7279   |
| 0.5563        | 4.9935  | 191  | 0.5622          | 0.7647   |
| 0.3851        | 5.9869  | 229  | 0.5238          | 0.8015   |
| 0.3327        | 6.9804  | 267  | 0.6382          | 0.7941   |
| 0.2469        | 8.0     | 306  | 0.4330          | 0.8456   |
| 0.2903        | 8.9935  | 344  | 0.4212          | 0.8309   |
| 0.1861        | 9.9869  | 382  | 0.4140          | 0.8529   |
| 0.1533        | 10.9804 | 420  | 0.3810          | 0.8603   |
| 0.1017        | 12.0    | 459  | 0.3565          | 0.8603   |
| 0.1285        | 12.9935 | 497  | 0.3057          | 0.8971   |
| 0.1377        | 13.9869 | 535  | 0.3058          | 0.8824   |
| 0.1033        | 14.9020 | 570  | 0.3140          | 0.8824   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1